Literatura académica sobre el tema "Automatic Stance Detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Automatic Stance Detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Automatic Stance Detection"
Yan, Yilin, Jonathan Chen y Mei-Ling Shyu. "Efficient Large-Scale Stance Detection in Tweets". International Journal of Multimedia Data Engineering and Management 9, n.º 3 (julio de 2018): 1–16. http://dx.doi.org/10.4018/ijmdem.2018070101.
Texto completoGhimire, Niroj y Surendra Shrestha. "Fake News Stance Detection using Deep Neural Network". Journal of Lumbini Engineering College 4, n.º 1 (7 de diciembre de 2022): 49–53. http://dx.doi.org/10.3126/lecj.v4i1.49366.
Texto completoWillemsen, A. T. M., F. Bloemhof y H. B. K. Boom. "Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation". IEEE Transactions on Biomedical Engineering 37, n.º 12 (1990): 1201–8. http://dx.doi.org/10.1109/10.64463.
Texto completoMartínez, Rubén Yáñez, Guillermo Blanco y Anália Lourenço. "Spanish Corpora of tweets about COVID-19 vaccination for automatic stance detection". Information Processing & Management 60, n.º 3 (mayo de 2023): 103294. http://dx.doi.org/10.1016/j.ipm.2023.103294.
Texto completoStede, Manfred. "Automatic argumentation mining and the role of stance and sentiment". Journal of Argumentation in Context 9, n.º 1 (4 de mayo de 2020): 19–41. http://dx.doi.org/10.1075/jaic.00006.ste.
Texto completoLidstone, Daniel E., Louise M. Porcher, Jessica DeBerardinis, Janet S. Dufek y Mohamed B. Trabia. "Concurrent Validity of an Automated Footprint Detection Algorithm to Measure Plantar Contact Area During Walking". Journal of the American Podiatric Medical Association 109, n.º 6 (1 de noviembre de 2019): 416–25. http://dx.doi.org/10.7547/17-118.
Texto completoHouliston, B. R., A. F. Merry y D. T. Parry. "TADAA: Towards Automated Detection of Anaesthetic Activity". Methods of Information in Medicine 50, n.º 05 (2011): 464–71. http://dx.doi.org/10.3414/me11-02-0001.
Texto completoOmero, Paolo, Massimiliano Valotto, Riccardo Bellana, Ramona Bongelli, Ilaria Riccioni, Andrzej Zuczkowski y Carlo Tasso. "Writer’s uncertainty identification in scientific biomedical articles: a tool for automatic if-clause tagging". Language Resources and Evaluation 54, n.º 4 (11 de junio de 2020): 1161–81. http://dx.doi.org/10.1007/s10579-020-09491-8.
Texto completoKarande, Hema, Rahee Walambe, Victor Benjamin, Ketan Kotecha y TS Raghu. "Stance detection with BERT embeddings for credibility analysis of information on social media". PeerJ Computer Science 7 (14 de abril de 2021): e467. http://dx.doi.org/10.7717/peerj-cs.467.
Texto completoBriggs, Eloise V. y Claudia Mazzà. "Automatic methods of hoof-on and -off detection in horses using wearable inertial sensors during walk and trot on asphalt, sand and grass". PLOS ONE 16, n.º 7 (26 de julio de 2021): e0254813. http://dx.doi.org/10.1371/journal.pone.0254813.
Texto completoTesis sobre el tema "Automatic Stance Detection"
Dias, Marcelo dos Santos. "Detecção não supervisionada de posicionamento em textos de tweets". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/169098.
Texto completoStance Detection is the task of automatically identifying if the author of a text is in favor of the given target, against the given target, or whether neither inference is likely. With the wide use of Twitter as a platform to express opinions and stances, the automatic analysis of this content becomes of high regard for companies, organizations and public figures. In general, works that explore such task adopt supervised or semi-supervised approaches. The present work proposes and evaluates a non-supervised process to detect stance in texts of tweets that has as entry only the target and a set of tweets to classify and is based on a hybrid approach composed by 2 stages: a) automatic labelling of tweets based on a set of heuristics and b) complementary classification based on supervised machine learning. The proposal succeeds when applied to public figures, overcoming the state-of-the-art. Beyond that, some alternatives are evaluated with the intention of increasing the performance when applied to other domains, revealing the possibility of use of strategies such as using seed targets and profiles depending on each domain characteristics.
Kanhere, Neeraj Krantiveer. "Vision-based detection, tracking and classification of vehicles using stable features with automatic camera calibration". Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1219861574/.
Texto completocignarella, alessandra teresa. "Dependency Syntax in the Automatic Detection of Irony and Stance". Doctoral thesis, 2021. http://hdl.handle.net/2318/1873580.
Texto completoRenda, Alessandro. "Algorithms and techniques for data stream mining". Doctoral thesis, 2021. http://hdl.handle.net/2158/1235915.
Texto completoCapítulos de libros sobre el tema "Automatic Stance Detection"
Zhang, Yanjing, Jianming Cui y Ming Liu. "Research on Adversarial Patch Attack Defense Method for Traffic Sign Detection". En Communications in Computer and Information Science, 199–210. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-8285-9_15.
Texto completoWang, Yan. "Fast Detection and Automatic Parameter Estimation of a Gravitational Wave Signal with a Novel Method". En First-stage LISA Data Processing and Gravitational Wave Data Analysis, 205–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26389-2_12.
Texto completoYan, Yilin, Jonathan Chen y Mei-Ling Shyu. "Efficient Large-Scale Stance Detection in Tweets". En Deep Learning and Neural Networks, 667–83. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0414-7.ch037.
Texto completoBarker, Zoe E., Nick J. Bell, Jonathan R. Amory y Edward A. Codling. "Developments in automated systems for monitoring livestock health: lameness". En Advances in precision livestock farming, 247–88. Burleigh Dodds Science Publishing, 2022. http://dx.doi.org/10.19103/as.2021.0090.10.
Texto completoZou, Dehua, Zhipeng Jiang, Minmin Qiao, Lanlan Liu, Wei Jiang y Qianwei Yi. "Analysis and Simulation of Dynamic Characteristics for Multi-Split Transmission Line Splicing Pipe Flaw Detection Robot". En Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220494.
Texto completo"Intrusion Detection Systems for (Wireless) Automation Systems". En The State of the Art in Intrusion Prevention and Detection, 449–66. Auerbach Publications, 2014. http://dx.doi.org/10.1201/b16390-23.
Texto completoTang, Yongmei, Xiangyun Liao, Weixin Si y Zhigang Ning. "Prediction of Alzheimer’s Disease Based on Coordinate-Dense Attention Network". En Proceedings of CECNet 2021. IOS Press, 2021. http://dx.doi.org/10.3233/faia210390.
Texto completoSklar, Larry A. "The Future of Flow Cytometry in Biotechnology: The Response to Diversity and Complexity". En Flow Cytometry for Biotechnology. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195183146.003.0004.
Texto completoActas de conferencias sobre el tema "Automatic Stance Detection"
Gupta, Anuradha y Shikha Mehta. "Automatic Stance Detection for Twitter Data". En 2022 1st International Conference on Informatics (ICI). IEEE, 2022. http://dx.doi.org/10.1109/ici53355.2022.9786920.
Texto completoMohtarami, Mitra, Ramy Baly, James Glass, Preslav Nakov, Lluís Màrquez y Alessandro Moschitti. "Automatic Stance Detection Using End-to-End Memory Networks". En Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/n18-1070.
Texto completoConforti, Costanza, Mohammad Taher Pilehvar y Nigel Collier. "Towards Automatic Fake News Detection: Cross-Level Stance Detection in News Articles". En Proceedings of the First Workshop on Fact Extraction and VERification (FEVER). Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/w18-5507.
Texto completoChristhie, William, Julio C. S. Reis, Fabrício Benevenuto Mirella M. Moro y Virgílio Almeida. "Detecção de Posicionamento em Tweets sobre Política no Contexto Brasileiro". En VII Brazilian Workshop on Social Network Analysis and Mining. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/brasnam.2018.3583.
Texto completoSantos, Patricia D. y Denise H. Goya. "Automatic Twitter Stance Detection on Politically Controversial Issues: A Study on Covid-19’s CPI". En Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/eniac.2021.18281.
Texto completoKotelnikov, Evgeny, Natalia Loukachevitch, Irina Nikishina y Alexander Panchenko. "RuArg-2022: Argument Mining Evaluation". En Dialogue. RSUH, 2022. http://dx.doi.org/10.28995/2075-7182-2022-21-333-348.
Texto completoDow, Blaine, Pierrick Ferrando, N. I. Abolins, Tom Leonard, Ahmed Abuelaish, Nicolas Gallinal Cuenca, Jerry Hansen y Freddy Rojas Rodriguez. "Advancing Influx Detection Toward Automated Well Control". En IADC/SPE International Drilling Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/208750-ms.
Texto completoKrikor, Ara, Shreepad Purushottam Khambete, Paulinus Abhyudaya Bimastianto, Michael Bradley Cotten, Lucian Toader, Fernando Jose Landaeta Rivas, Shahid Yakubbhai Duivala et al. "Machine Learning Delivers Automated Feedback on Real Time Key Performance Indicators During Drilling Operations". En ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211753-ms.
Texto completoAl Radi, Muaz, Hamad Karki, Naoufel Werghi, Sajid Javed y Jorge Dias. "Video Analysis of Flare Stacks with an Autonomous Low-Cost Aerial System". En ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211007-ms.
Texto completoKotonya, Neema y Francesca Toni. "Gradual Argumentation Evaluation for Stance Aggregation in Automated Fake News Detection". En Proceedings of the 6th Workshop on Argument Mining. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/w19-4518.
Texto completoInformes sobre el tema "Automatic Stance Detection"
Berney, Ernest, Andrew Ward y Naveen Ganesh. First generation automated assessment of airfield damage using LiDAR point clouds. Engineer Research and Development Center (U.S.), marzo de 2021. http://dx.doi.org/10.21079/11681/40042.
Texto completoYan, Yujie y Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, mayo de 2021. http://dx.doi.org/10.17760/d20410114.
Texto completoFang, Chen. Unsettled Issues in Vehicle Autonomy, Artificial Intelligence, and Human-Machine Interaction. SAE International, abril de 2021. http://dx.doi.org/10.4271/epr2021010.
Texto completoSeginer, Ido, Louis D. Albright y Robert W. Langhans. On-line Fault Detection and Diagnosis for Greenhouse Environmental Control. United States Department of Agriculture, febrero de 2001. http://dx.doi.org/10.32747/2001.7575271.bard.
Texto completoGalili, Naftali, Roger P. Rohrbach, Itzhak Shmulevich, Yoram Fuchs y Giora Zauberman. Non-Destructive Quality Sensing of High-Value Agricultural Commodities Through Response Analysis. United States Department of Agriculture, octubre de 1994. http://dx.doi.org/10.32747/1994.7570549.bard.
Texto completoEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak y Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, julio de 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Texto completo