Literatura académica sobre el tema "Asynchronous dynamics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Asynchronous dynamics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Asynchronous dynamics"
Cirillo, Emilio Nicola Maria, Vanessa Jacquier y Cristian Spitoni. "Metastability of Synchronous and Asynchronous Dynamics". Entropy 24, n.º 4 (24 de marzo de 2022): 450. http://dx.doi.org/10.3390/e24040450.
Texto completoTsuda, I., E. Koerner y H. Shimizu. "Memory Dynamics in Asynchronous Neural Networks". Progress of Theoretical Physics 78, n.º 1 (1 de julio de 1987): 51–71. http://dx.doi.org/10.1143/ptp.78.51.
Texto completoBick, Christian y Michael Field. "Asynchronous networks: modularization of dynamics theorem". Nonlinearity 30, n.º 2 (6 de enero de 2017): 595–621. http://dx.doi.org/10.1088/1361-6544/aa4f4d.
Texto completoBick, Christian y Michael Field. "Asynchronous networks and event driven dynamics". Nonlinearity 30, n.º 2 (6 de enero de 2017): 558–94. http://dx.doi.org/10.1088/1361-6544/aa4f62.
Texto completoSKODAWESSELY, THOMAS y KONSTANTIN KLEMM. "FINDING ATTRACTORS IN ASYNCHRONOUS BOOLEAN DYNAMICS". Advances in Complex Systems 14, n.º 03 (junio de 2011): 439–49. http://dx.doi.org/10.1142/s0219525911003098.
Texto completoMacauley, Matthew, Jon McCammond y Henning S. Mortveit. "Dynamics groups of asynchronous cellular automata". Journal of Algebraic Combinatorics 33, n.º 1 (8 de mayo de 2010): 11–35. http://dx.doi.org/10.1007/s10801-010-0231-y.
Texto completoFriston, Karl J. "The labile brain. I. Neuronal transients and nonlinear coupling". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355, n.º 1394 (29 de febrero de 2000): 215–36. http://dx.doi.org/10.1098/rstb.2000.0560.
Texto completoPASEMANN, FRANK. "SYNCHRONOUS AND ASYNCHRONOUS CHAOS IN COUPLED NEUROMODULES". International Journal of Bifurcation and Chaos 09, n.º 10 (octubre de 1999): 1957–68. http://dx.doi.org/10.1142/s0218127499001425.
Texto completoForte, N., F. Binda, A. Contestabile, F. Benfenati y P. Baldelli. "Synapsin I Synchronizes GABA Release in Distinct Interneuron Subpopulations". Cerebral Cortex 30, n.º 3 (30 de agosto de 2019): 1393–406. http://dx.doi.org/10.1093/cercor/bhz174.
Texto completoKodkin, Vladimir L. y Aleksandr S. Anikin. "The experimental identification method of the dynamic efficiency for frequency regulation algorithms of AEDs". International Journal of Power Electronics and Drive Systems (IJPEDS) 12, n.º 1 (1 de marzo de 2021): 59. http://dx.doi.org/10.11591/ijpeds.v12.i1.pp59-66.
Texto completoTesis sobre el tema "Asynchronous dynamics"
Malala, John N. "Psycho-socio dynamics of e-learning : investigation students perceptions of efficacy in asynchronous computer-generated learning". Thesis, University of Bradford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.617067.
Texto completoSessa, Jocelyn. "The Dynamics of Rapid, Asynchronous Biotic Turnover in the Middle Devonian Appalachian Basin of New York". University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1054576413.
Texto completoBasso, Jeremy J. "The Dynamics of Student-to-Student Interpersonal Communication Motives and Communication Styles in Asynchronous Higher Education Environments". Thesis, Union Institute and University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10797861.
Texto completoThis research study examines the dynamics of student-to-student interpersonal mediated communication motives within asynchronous discussion forums. The objective is to determine the interpersonal mediated communication motives and communicator style of students enrolled in fully asynchronous community college courses with the intention to supplement, enhance, and refine the existing research in online education through the application of relevant theories and methods from the field of communication studies. Specifically, the study seeks to determine students' communication motives for consensus-building and agonistic oriented purposes. A mixed methods approach has been utilized through the implementation of a 5-point Likert scale survey, comprised of forty questions, which was provided towards the end of a traditional 16 week semester to 125 students enrolled in five fully asynchronous courses. In an attempt to discover whether students respond to their classmates' asynchronous discussion forum posts for consensus-building motives or for purposes of engaging in agonistic confrontations, a discourse analysis of various forum responses was performed after completion of the asynchronous courses. Previous studies of community building within asynchronous contexts and interpersonal communication motives research suggest that students enrolled in fully asynchronous courses will engage in student-to-student interpersonal mediated communication for the purpose of pleasure, affection, inclusion, control, companionship, habit, receiving information, participation and functional purposes. Through the implementation of the 5-point Likert-scale survey, I discovered six interpersonal mediated communication motives (inclusion, participation, affection, receiving information, functional and pleasure) of student-to-student responses within fully asynchronous discussion forums and four communicator styles (friendly, attentive, communicator image and impression leaving). The findings from the discourse analysis overwhelmingly revealed that the student-to-student interpersonal mediated communication motive for responding to discussion forum posts was most frequently correlated with the students' rationale for consensus-building as opposed to exhibiting a rationale for agonistic pluralism.
Key words: interpersonal mediated communication motives, communicator styles, asynchronous discussion forums, higher education, consensus-building, agonistic confrontation.
Sessa, Jocelyn A. "The dynamics of rapid, asynchronous biotic turnover in the middle Devonian Appalachian basin of New York : a thesis /". Connect to The dynamics of rapid, asynchronous biotic turnover in the middle Devonian Appalachian basin of New York (Online), 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=1054576413.
Texto completoMullen, Michael P. "DATA ACQUISITION, ANALYSIS, AND MODELING OF ROTORDYNAMIC SYSTEMS". DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2164.
Texto completoNagel, Lynette. "The dynamics of learner participation in a virtual learning environment". Thesis, University of Pretoria, 2008. http://hdl.handle.net/2263/22951.
Texto completoThesis (PHD)--University of Pretoria, 2009.
Curriculum Studies
unrestricted
Ahmed, Jamil. "Asynchronous design in dynamic CMOS". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0011/MQ34126.pdf.
Texto completoZajíc, Jiří. "Návrh automatického pohonu kostelních zvonů". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230627.
Texto completoPham, The Anh. "Efficient state-space exploration for asynchronous distributed programs ˸ Adapting unfolding-based dynamic partial order reduction to MPI programs". Thesis, Rennes, École normale supérieure, 2019. http://www.theses.fr/2019ENSR0020/document.
Texto completoDistributed message passing applications are in the mainstream of information technology since they exploit the power of parallel computer systems to produce higher performance. Designing distributed programs remains challenging because developers have to reason about concurrency, non-determinism, data distribution… that are main characteristics of distributed programs. Besides, it is virtually impossible to ensure the correctness of such programs via classical testing approaches since one may never successfully reach the execution that leads to unwanted behaviors in the programs. There is thus a need for more powerful verification techniques. Model-checking is one of the formal methods that allows to verify automatically and effectively some properties on models of computer systems by exploring all possible behaviors (states and transitions) of the system model. However, state spaces increase exponentially with the number of concurrent processes, leading to “state space explosion”.Unfolding-based Dynamic Partial Order Reduction (UDPOR) is a recent technique mixing Dynamic Partial Order Reduction (DPOR) with concepts of concurrency theory such as unfoldings to efficiently mitigate state space explosion in model-checking of concurrent programs. It is optimal in the sense that each Mazurkiewicz trace, i.e. a class of interleavings equivalent by commuting adjacent independent actions, is explored exactly once. And it is applicable to running programs, not only models of programs.The thesis aims at adapting UDPOR to verify asynchronous distributed programs (e.g. MPI programs) in the setting of the SIMGRID simulator of distributed applications. To do so, an abstract programming model of asynchronous distributed programs is defined and formalized in the TLA+ language, allowing to precisely define an independence relation, a main ingredient of the concurrency semantics. Then, the adaptation of UDPOR, involving the construction of an unfolding, is made efficient by a precise analysis of dependencies in the programming model, allowing efficient computations of usually costly operation. A prototype implementation of UDPOR adapted to distributed asynchronous programs has been developed, giving promising experimental results on a significant set of benchmarks
Kocak, Umut, Karljohan Palmerius y Matthew Cooper. "Dynamic Deformation Using Adaptable, Linked Asynchronous FEM Regions". Linköpings universitet, Visuell informationsteknologi och applikationer, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18053.
Texto completoLibros sobre el tema "Asynchronous dynamics"
Center, Langley Research, ed. Asynchronous communication of TLNS3DMB boundary exchange. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Buscar texto completoMarshall, P. N. A prototype multimedia interface for displaying aspects of group dynamics in an asynchronous distributed CSCW meeting. Manchester: UMIST, 1993.
Buscar texto completoAhmed, Jamil. Asynchronous design in dynamic CMOS. Ottawa: National Library of Canada, 1998.
Buscar texto completoCenter, Ames Research, ed. Dynamic modelling and estimation of the error due to asynchronism in a redundant asynchronous multiprocessor system. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1986.
Buscar texto completoShapiro, Arthur G. Contrast Asynchronies. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199794607.003.0112.
Texto completoDynamic Relevance Filtering in Asynchronous Transfer Mode-Based Distributed Interactive Simulation Exercises. Storming Media, 1996.
Buscar texto completoCapítulos de libros sobre el tema "Asynchronous dynamics"
Nisan, Noam, Michael Schapira y Aviv Zohar. "Asynchronous Best-Reply Dynamics". En Lecture Notes in Computer Science, 531–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-92185-1_59.
Texto completoMelliti, Tarek, Mathilde Noual, Damien Regnault, Sylvain Sené y Jérémy Sobieraj. "Asynchronous Dynamics of Boolean Automata Double-Cycles". En Unconventional Computation and Natural Computation, 250–62. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21819-9_19.
Texto completoDormanns, Marcus y Walter Sprangers. "Experiences with asynchronous parallel molecular dynamics simulations". En High-Performance Computing and Networking, 213–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61142-8_550.
Texto completoRibeiro, Tony, Maxime Folschette, Morgan Magnin, Olivier Roux y Katsumi Inoue. "Learning Dynamics with Synchronous, Asynchronous and General Semantics". En Inductive Logic Programming, 118–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99960-9_8.
Texto completoTorikai, Hiroyuki y Takashi Matsubara. "Asynchronous Cellular Automaton Based Modeling of Nonlinear Dynamics of Neuron". En Understanding Complex Systems, 101–12. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02925-2_9.
Texto completoGrady, Devin K., Kostas E. Bekris y Lydia E. Kavraki. "Asynchronous Distributed Motion Planning with Safety Guarantees under Second-Order Dynamics". En Springer Tracts in Advanced Robotics, 53–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17452-0_4.
Texto completoLeitz, Thomas, Sina Ober-Blöbaum y Sigrid Leyendecker. "Variational Lie Group Formulation of Geometrically Exact Beam Dynamics: Synchronous and Asynchronous Integration". En Computational Methods in Applied Sciences, 175–203. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07260-9_8.
Texto completoMazzilli, Carlos E. N. y Eduardo A. R. Ribeiro. "Asynchronous Modes of Beams on Elastic Media Subjected to Varying Normal Force: Continuous and Discrete Models". En IUTAM Symposium on Exploiting Nonlinear Dynamics for Engineering Systems, 203–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23692-2_18.
Texto completoTakeda, Kentaro y Hiroyuki Torikai. "A Novel Hardware-Efficient CPG Model Based on Nonlinear Dynamics of Asynchronous Cellular Automaton". En Neural Information Processing, 812–20. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70136-3_86.
Texto completoBanerjee, Santo y S. Mukhopadhyay. "A Chaos Based Secure Communication Scheme for Hybrid Message Logging and Asynchronous Checkpointing for Mobile Computing". En Applications of Chaos and Nonlinear Dynamics in Engineering - Vol. 1, 321–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21922-1_10.
Texto completoActas de conferencias sobre el tema "Asynchronous dynamics"
Kovalev, V. Z., V. O. Bessonov, Ye M. Kuznetsov y D. O. Pavlov. "Direct Measurement of Rotational Rate of Asynchronous Electrical Submersible Motors for Oil Production". En 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601471.
Texto completoMonakhov, Yuri M., Andrey V. Telny, Mikhail Yu Monakhov y A. P. Kuznetsova. "Adaptive Algorithm for Synchronous-Asynchronous Radio Transmission System Operation". En 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2020. http://dx.doi.org/10.1109/dynamics50954.2020.9306144.
Texto completoKuznetsov, Ye M., A. Yu Kovalev y V. V. Anikin. "Energy parameters of a submersible asynchronous electric motor at variations of rotor pack electromagnetic parameters". En 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239476.
Texto completoBelyaev, P. V. y A. P. Golovskiy. "Diagnostics of Asynchronous Motor Failures at the Early Stages of Damage". En 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2020. http://dx.doi.org/10.1109/dynamics50954.2020.9306152.
Texto completoGotsman, Shamir y Lehmann. "Asynchronous dynamics of random Boolean networks". En Proceedings of 1993 IEEE International Conference on Neural Networks (ICNN '93). IEEE, 1988. http://dx.doi.org/10.1109/icnn.1988.23821.
Texto completoKashi, Aditya, Syam Vangara y Sivakumaran Nadarajah. "Asynchronous fine-grain parallel smoothers for computational fluid dynamics". En 2018 Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3558.
Texto completoLysenko, O. A. "Sensorless Scalar Asynchronous Electric Drive for Pressure Stabilization of the Pumping Unit". En 2021 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2021. http://dx.doi.org/10.1109/dynamics52735.2021.9653468.
Texto completoKashi, Aditya, Syam Vangara y Sivakumaran Nadarajah. "Correction: Asynchronous fine-grain parallel smoothers for computational fluid dynamics". En 2018 Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3558.c1.
Texto completoShestakov, Alexander V. y Anton A. Fominykh. "Modeling of control processes of the asynchronous motor under pulsating mode with due regard for the influence of real factors". En 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239507.
Texto completoMa, Jing y Edmund M.-K. Lai. "Cucker-smale flocking under asynchronous update dynamics". En 2017 IEEE International Conference on Agents (ICA). IEEE, 2017. http://dx.doi.org/10.1109/agents.2017.8015300.
Texto completoInformes sobre el tema "Asynchronous dynamics"
Kumar, Akshat, John Hector Solis y Benjamin Matschke. Dynamic analysis methods for detecting anomalies in asynchronously interacting systems. Office of Scientific and Technical Information (OSTI), enero de 2014. http://dx.doi.org/10.2172/1204104.
Texto completo