Índice
Literatura académica sobre el tema "Arrondi Stochastique"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Arrondi Stochastique".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Arrondi Stochastique"
Tynda, Aleksandr, Samad Noeiaghdam y Denis Sidorov. "Polynomial Spline Collocation Method for Solving Weakly Regular Volterra Integral Equations of the First Kind". Bulletin of Irkutsk State University. Series Mathematics 39 (2022): 62–79. http://dx.doi.org/10.26516/1997-7670.2022.39.62.
Texto completoNoeiaghdam, Samad y Sanda Micula. "A Novel Method for Solving Second Kind Volterra Integral Equations with Discontinuous Kernel". Mathematics 9, n.º 17 (5 de septiembre de 2021): 2172. http://dx.doi.org/10.3390/math9172172.
Texto completoNoeiaghdam, Samad, Aliona Dreglea, Jihuan He, Zakieh Avazzadeh, Muhammad Suleman, Mohammad Ali Fariborzi Araghi, Denis N. Sidorov y Nikolai Sidorov. "Error Estimation of the Homotopy Perturbation Method to Solve Second Kind Volterra Integral Equations with Piecewise Smooth Kernels: Application of the CADNA Library". Symmetry 12, n.º 10 (20 de octubre de 2020): 1730. http://dx.doi.org/10.3390/sym12101730.
Texto completoNoeiaghdam, L., S. Noeiaghdam y D. N. Sidorov. "Dynamical control on the Adomian decomposition method for solving shallow water wave equation". iPolytech Journal 25, n.º 5 (9 de noviembre de 2021): 623–32. http://dx.doi.org/10.21285/1814-3520-2021-5-623-632.
Texto completoNoeiaghdam, Samad y Mohammad Ali Fariborzi Araghi. "A Novel Algorithm to Evaluate Definite Integrals by the Gauss-Legendre Integration Rule Based on the Stochastic Arithmetic: Application in the Model of Osmosis System". Mathematical Modelling of Engineering Problems 7, n.º 4 (18 de diciembre de 2020): 577–86. http://dx.doi.org/10.18280/mmep.070410.
Texto completoAraghi, Mohammad Ali Fariborzi y Samad Noeiaghdam. "A Valid Scheme to Evaluate Fuzzy Definite Integrals by Applying the CADNA Library". International Journal of Fuzzy System Applications 6, n.º 4 (octubre de 2017): 1–20. http://dx.doi.org/10.4018/ijfsa.2017100101.
Texto completoNoeiaghdam, Samad, Sanda Micula y Juan J. Nieto. "A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library". Mathematics 9, n.º 12 (8 de junio de 2021): 1321. http://dx.doi.org/10.3390/math9121321.
Texto completoNoeiaghdam, Samad, Denis Sidorov, Alyona Zamyshlyaeva, Aleksandr Tynda y Aliona Dreglea. "A Valid Dynamical Control on the Reverse Osmosis System Using the CESTAC Method". Mathematics 9, n.º 1 (28 de diciembre de 2020): 48. http://dx.doi.org/10.3390/math9010048.
Texto completoNoeiaghdam, Samad, Denis Sidorov, Abdul-Majid Wazwaz, Nikolai Sidorov y Valery Sizikov. "The Numerical Validation of the Adomian Decomposition Method for Solving Volterra Integral Equation with Discontinuous Kernels Using the CESTAC Method". Mathematics 9, n.º 3 (28 de enero de 2021): 260. http://dx.doi.org/10.3390/math9030260.
Texto completoNoeiaghdam, Samad, Aliona Dreglea, Hüseyin Işık y Muhammad Suleman. "A Comparative Study between Discrete Stochastic Arithmetic and Floating-Point Arithmetic to Validate the Results of Fractional Order Model of Malaria Infection". Mathematics 9, n.º 12 (20 de junio de 2021): 1435. http://dx.doi.org/10.3390/math9121435.
Texto completoTesis sobre el tema "Arrondi Stochastique"
El, Arar El-Mehdi. "Stochastic models for the evaluation of numerical errors". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG104.
Texto completoThe idea of assuming rounding errors as random variables is not new. Based on tools such as independent random variables or the Central Limit Theorem, various propositions have demonstrated error bounds in O(√n). This thesis is dedicated to studying stochastic rounding (SR) as a replacement for the default deterministic rounding mode. First, we introduce a new approach to derive a probabilistic error bound in O(√n) based on variance calculation and Bienaymé-Chebyshev inequality. Second, we demonstrate a general framework that allows the probabilistic error analysis of algorithms under SR. In this context, we decompose the error into a martingale plus a drift. We show that the drift is zero for algorithms with multi-linear errors, while the probabilistic analysis of the martingale term leads to probabilistic error bounds in O(√n). We show that the drift is negligible at the first order compared to the martingale term for the variance computation, and we prove probabilistic error bounds in O(√n)
Chotin-Avot, Roselyne. "Architectures matérielles pour l'arithmétique stochastique discrète". Paris 6, 2003. http://hal.upmc.fr/tel-01267458.
Texto completo