Literatura académica sobre el tema "Approximation de Boussinesq quadratique"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Approximation de Boussinesq quadratique".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Approximation de Boussinesq quadratique"
Young, William R. "Dynamic Enthalpy, Conservative Temperature, and the Seawater Boussinesq Approximation". Journal of Physical Oceanography 40, n.º 2 (1 de febrero de 2010): 394–400. http://dx.doi.org/10.1175/2009jpo4294.1.
Texto completoWood, T. S. y P. J. Bushby. "Oscillatory convection and limitations of the Boussinesq approximation". Journal of Fluid Mechanics 803 (30 de agosto de 2016): 502–15. http://dx.doi.org/10.1017/jfm.2016.511.
Texto completoRAJAGOPAL, K. R., M. RUZICKA y A. R. SRINIVASA. "ON THE OBERBECK-BOUSSINESQ APPROXIMATION". Mathematical Models and Methods in Applied Sciences 06, n.º 08 (diciembre de 1996): 1157–67. http://dx.doi.org/10.1142/s0218202596000481.
Texto completoTéchené, Jean-Jacques. "Les aspects fondamentaux de l'admissibilité en approximation quadratique d'applications linéaires". Linear Algebra and its Applications 264 (octubre de 1997): 389–419. http://dx.doi.org/10.1016/s0024-3795(96)00405-3.
Texto completoBarletta, Antonio, Michele Celli y D. Andrew S. Rees. "On the Use and Misuse of the Oberbeck–Boussinesq Approximation". Physics 5, n.º 1 (17 de marzo de 2023): 298–309. http://dx.doi.org/10.3390/physics5010022.
Texto completoGomes, Diogo A. y Claudia Valls. "Approximation of ill-posed boussinesq equations". Dynamical Systems 19, n.º 4 (diciembre de 2004): 345–57. http://dx.doi.org/10.1080/1468936042000269587.
Texto completoBaron-Pertuz, Cristian-Fabian, Ana-Magnolia Marin-Ramirez y Ruben-Dario Ortiz-Ortiz. "An approximation to the Boussinesq equations". International Journal of Mathematical Analysis 8 (2014): 2433–37. http://dx.doi.org/10.12988/ijma.2014.48274.
Texto completoPRUŠA, VÍT y K. R. RAJAGOPAL. "ON MODELS FOR VISCOELASTIC MATERIALS THAT ARE MECHANICALLY INCOMPRESSIBLE AND THERMALLY COMPRESSIBLE OR EXPANSIBLE AND THEIR OBERBECK–BOUSSINESQ TYPE APPROXIMATIONS". Mathematical Models and Methods in Applied Sciences 23, n.º 10 (12 de julio de 2013): 1761–94. http://dx.doi.org/10.1142/s0218202513500516.
Texto completoSiddiqui, Perwez. "Density Modelling in Mixed Convection Flow in a Vertical Parallel Plate Channel". International Journal of Heat and Technology 39, n.º 4 (31 de agosto de 2021): 1294–304. http://dx.doi.org/10.18280/ijht.390428.
Texto completoGrandi, Diego y Arianna Passerini. "On the Oberbeck–Boussinesq approximation for gases". International Journal of Non-Linear Mechanics 134 (septiembre de 2021): 103738. http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103738.
Texto completoTesis sobre el tema "Approximation de Boussinesq quadratique"
Ferré, Alexis. "Etude CFD et expérimentale d'un stockage thermique de type thermocline". Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3023.
Texto completoEnergy storage is essential to the energy transition as it allows decoupling energy production from its consumption. Water-based thermocline heat storage, used in medium or low-temperature heating networks, relies on thermal stratification in a tank. The performance of this type of storage is strongly linked to the proper stratification of the fluid, which can be disrupted by the injection and extraction of the liquid, aspects that are scarcely explored in the literature.The objective of this thesis is to reliably model such storage to analyze the fluid distribution. The aim is to better understand the physical phenomena governing the thermocline during operating cycles and to enhance its energy performance through improved design or control. To achieve this, numerical studies using CFD (Computational Fluid Dynamics) were conducted and compared with experimental data available in the literature and obtained via a new experimental setup.Initially, a CFD model was developed based on an existing experimental case from the literature. In water thermocline storage, there is often coexistence between a laminar region in the tank and a turbulent region near the distributors. This coexistence is a major challenge in modeling because most turbulence models cannot reliably represent the transition from turbulent to laminar flow. For this work, a RANS (Reynolds Average Numerical Simulation) statistical method is adopted, and the k-omega-SST model is selected as it can represent near-wall flows. Regarding buoyancy, there are two methods to consider its effects: using a variable density in all equations or a constant density except in the buoyancy term. The latter is known as the Boussinesq approximation but is only valid over a narrow range of ΔT. The accuracy of the Boussinesq approximation has been questioned, and a second-order approach of this model is employed. This allows obtaining the same buoyancy term as a variable density model but with a calculation time reduced by half. Comparison with experimental data highlighted the impact of the initial temperature state (stratified or homogeneous storage). An exploratory study of the impact of progressive injection according to a flow ramp showed its effect on reducing the thermocline thickness at the time of its creation.As part of the model validation and verification of numerical observations, a new experimental setup was designed. It measures the temperature using 300 thermocouples placed in the tank and allows precise control of operating conditions. Static phase studies to evaluate thermal losses were conducted. Dynamic studies allowed varying relevant operating parameters: axial propagation speed, temperature difference, extraction device, and progressive injection. For this system, the results show that it is possible to obtain stratification at high speed (> 2 mm/s) as long as the ΔT is sufficiently high.Finally, the flow in the test section was numerically studied with an updated CFD model. The variable fields showed that the numerical and experimental results are consistent, especially during the formation of the thermocline. However, excessive diffusion during the propagation of the thermal gradient at low flow is notable. For all the tests carried out, the experimental and numerical discrepancies were quantified: except for critical conditions, the discrepancy in thermocline thickness is ±50% and ranges from 0 to -10% for the restitution rate
McQuarrie, Shane Alexander. "Data Assimilation in the Boussinesq Approximation for Mantle Convection". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6951.
Texto completoHaschke, Heike. "Splitting-Techniken zur spektralen Approximation der Navier-Stokes- und Boussinesq-Gleichungen". [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96361083X.
Texto completoRubio, Diana. "Distributed Parameter Control of Thermal Fluids". Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30330.
Texto completoPh. D.
Hu, Weiwei. "Approximation and Control of the Boussinesq Equations with Application to Control of Energy Efficient Building Systems". Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/38664.
Texto completoPh. D.
Schneider, Nicolas. "Vorticité et mélange dans les écoulements de Rayleigh-Taylor turbulents, en approximation anélastique et de Boussinesq". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066466/document.
Texto completoThe Rayleigh-Taylor instability (RTI) is especially observed in inertial confinement fusion experiments, and its development prevents the success of these experiments. The purpose of this work is to study the growth of the RTI for different compressibility regimes by using a multidomain pseudospectral Chebyshev-Fourier-Fourier simulation code. The asymptotic expansion method allows to establish several low Mach number models which do not contains acoustics. The implantation of the anelastic model, which deals with stratified fluids and captures thermal effects, has been improved. Moreover, the Boussinesq model is added to the simulation code. The accuracy of the entire numerical method is studied, as a function of the subdomain separation, and several validation elements are shown, including a comparison with an experimental study. The first simulation to be analyzed is achieved with the Boussinesq model. We focus on the self-similarity of the RTI growth. The temporal scalings of vorticity and dissipation are displayed, and the structures of turbulence and mixing are discussed. Some properties of isotropic and homogeneous turbulence are observed, however some anisotropy remains at small scales. The first three-dimensional anelastic simulations are presented. The influence of compressibility effects on the first stages of the growth is studied. Finally, a developed anelastic mixing layer involving weakly stratified fluids is described and was found to display non-negligible compressibility effects
Bérard, Bergery Blandine. "Approximation du temps local et intégration par régularisation". Thesis, Nancy 1, 2007. http://www.theses.fr/2007NAN10058/document.
Texto completoThe setting of this work is the integration by regularization of Russo and Vallois. The first part studies schemes of approximation of the local time of continuous semimartingales. If X is a reversible diffusion, the convergence of a first schema of approximation to the local time of X is proven, in probability uniformly on the compact sets. From this first schema, two other schemas of approximation for the local time are found. One converges in the semi-martingale case, the other in the Brownian case. Moreover, in the Brownian case, we estimate the rate of convergence in L^2(Omega) and a result of almost sure convergence is proven. The second part study the forward integral and the generalized quadratic variation, which have been defined by convergence of families of integrals, in probability uniformly on the compacts sets. In the case of Hölder processes, the almost sure convergence is proven. Finally, the second order convergence is studied in many cases
Toqué, Nathalie. "Diffusion turbulente anisotrope dans les zones radiatives d'étoiles". Thèse, Paris 6, 2004. http://hdl.handle.net/1866/17334.
Texto completoNguyen, Phuong Anh. "Contrôle optimal localisé sur des structures fines pour des équations paraboliques semilinéaires et le système de Boussinesq". Toulouse 3, 2000. http://www.theses.fr/2000TOU30195.
Texto completoBerard, Bergery Blandine. "Approximation du temps local et intégration par régularisation". Phd thesis, Université Henri Poincaré - Nancy I, 2007. http://tel.archives-ouvertes.fr/tel-00181777.
Texto completoLibros sobre el tema "Approximation de Boussinesq quadratique"
Rubinstein, Robert. Renormalization group theory of Bolgiano scaling in Boussinesq turbulence. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Buscar texto completoMerkle, Klaus. Einfluss gleich- und gegensinniger Drehrichtung der Verbrennungsluftstro me auf die Stabilisierung turbulenter Doppeldrall-Diffusionsflammen. Karlsruhe: Univ.-Verl. Karlsruhe, 2006.
Buscar texto completoCapítulos de libros sobre el tema "Approximation de Boussinesq quadratique"
Herwig, Heinz. "Boussinesq-Approximation (Boussinesq approximation)". En Wärmeübertragung A-Z, 23–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_6.
Texto completoZeytounian, Radyadour. "The Boussinesq Approximation". En Asymptotic Modeling of Atmospheric Flows, 142–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-73800-5_8.
Texto completoDewan, Anupam. "Models Based on Boussinesq Approximation". En Tackling Turbulent Flows in Engineering, 49–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14767-8_5.
Texto completoFeireisl, Eduard y Maria E. Schonbek. "On the Oberbeck–Boussinesq Approximation on Unbounded Domains". En Nonlinear Partial Differential Equations, 131–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25361-4_7.
Texto completoHinze, Michael y Ulrich Matthes. "Optimal and Model Predictive Control of the Boussinesq Approximation". En International Series of Numerical Mathematics, 149–74. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-7721-2_7.
Texto completoDenisova, I. V. y V. A. Solonnikov. "Motion of Two Fluids in the Oberbeck-Boussinesq Approximation". En Motion of a Drop in an Incompressible Fluid, 205–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70053-9_9.
Texto completoStraughan, Brian. "The Navier-Stokes Equations, the Boussinesq Approximation, and the Standard Bénard Problem". En The Energy Method, Stability, and Nonlinear Convection, 38–55. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2194-2_3.
Texto completoHolm, Darryl D., Ruiao Hu y Oliver D. Street. "On the Interactions Between Mean Flows and Inertial Gravity Waves in the WKB Approximation". En Mathematics of Planet Earth, 111–41. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40094-0_5.
Texto completoDorok, O., W. Grambow y L. Tobiska. "Aspects of Finite Element Discretizations for Solving the Boussinesq Approximation of the Navier-Stokes Equations". En Numerical methods for the Navier-Stokes equations, 50–61. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-14007-8_6.
Texto completoNaveen, P. y Ch RamReddy. "Soret and Viscous Dissipation Effects on MHD Flow Along an Inclined Channel: Nonlinear Boussinesq Approximation". En Numerical Heat Transfer and Fluid Flow, 267–74. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1903-7_31.
Texto completoActas de conferencias sobre el tema "Approximation de Boussinesq quadratique"
Burns, John A. y Weiwei Hu. "Approximation methods for boundary control of the Boussinesq equations". En 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6759923.
Texto completoXiao, Jianjun, John R. Travis y Wolfgang Breitung. "Non-Boussinesq Integral Model for Horizontal Turbulent Strongly Buoyant Plane Jets". En 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48169.
Texto completoWilson, Carlos Perez y Serge Blancher. "ON THE BOUSSINESQ APPROXIMATION FOR THE POISEUILLE-RAYLEIGH-BENARD PROBLEM". En Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2008. http://dx.doi.org/10.1615/ichmt.2008.cht.1780.
Texto completoGobbi, Maurício F., Andrew B. Kennedy y James T. Kirby. "A Comparison of Higher Order Boussinesq and Local Polynomial Approximation Models". En 26th International Conference on Coastal Engineering. Reston, VA: American Society of Civil Engineers, 1999. http://dx.doi.org/10.1061/9780784404119.046.
Texto completoMehdizadeh, A. M., M. R. Bazargan-Lari, A. Mansoori y A. Mehdizadeh. "Two-Phase Flow Simulation of a Non-Boussinesq Density Current". En ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37274.
Texto completoKamel, John K. y Samuel Paolucci. "Heat Transfer and Fluid Flow in a Furnace Using the Non-Boussinesq Approximation". En ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56466.
Texto completoBhuyan, Shikha y Dipankar Narayan Basu. "Numerical analysis of mixed convection flow using non-Boussinesq approximation lattice Boltzmann method". En Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019). Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/ihmtc-2019.970.
Texto completoPitz, Diogo B., John W. Chew, Olaf Marxen y Nicholas J. Hills. "Direct Numerical Simulation of Rotating Cavity Flows Using a Spectral Element-Fourier Method". En ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56486.
Texto completoBarhaghi, Darioush G. y Lars Davidson. "On the Validity of the Boussinesq Approximation in a Developing Mixed Convection Boundary Layer". En 2007 International Conference on Thermal Issues in Emerging Technologies: Theory and Application. IEEE, 2007. http://dx.doi.org/10.1109/theta.2007.363439.
Texto completoZhou, Hongqiang y Michelle H. Teng. "Higher-Order Modeling of Water Waves Generated by Submerged Moving Disturbances". En ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80063.
Texto completo