Literatura académica sobre el tema "Approximate norm descent methods"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Approximate norm descent methods".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Approximate norm descent methods"
Morini, Benedetta, Margherita Porcelli y Philippe L. Toint. "Approximate norm descent methods for constrained nonlinear systems". Mathematics of Computation 87, n.º 311 (11 de mayo de 2017): 1327–51. http://dx.doi.org/10.1090/mcom/3251.
Texto completoJin, Yang, Li y Liu. "Sparse Recovery Algorithm for Compressed Sensing Using Smoothed l0 Norm and Randomized Coordinate Descent". Mathematics 7, n.º 9 (9 de septiembre de 2019): 834. http://dx.doi.org/10.3390/math7090834.
Texto completoXu, Kai y Zhi Xiong. "Nonparametric Tensor Completion Based on Gradient Descent and Nonconvex Penalty". Symmetry 11, n.º 12 (12 de diciembre de 2019): 1512. http://dx.doi.org/10.3390/sym11121512.
Texto completoKo, Dongnam y Enrique Zuazua. "Model predictive control with random batch methods for a guiding problem". Mathematical Models and Methods in Applied Sciences 31, n.º 08 (julio de 2021): 1569–92. http://dx.doi.org/10.1142/s0218202521500329.
Texto completoUtomo, Rukmono Budi. "METODE NUMERIK STEPEST DESCENT DENGAN DIRECTION DAN NORMRERATA ARITMATIKA". AKSIOMA Journal of Mathematics Education 5, n.º 2 (3 de enero de 2017): 128. http://dx.doi.org/10.24127/ajpm.v5i2.673.
Texto completoGoh, B. S. "Approximate Greatest Descent Methods for Optimization with Equality Constraints". Journal of Optimization Theory and Applications 148, n.º 3 (16 de noviembre de 2010): 505–27. http://dx.doi.org/10.1007/s10957-010-9765-3.
Texto completoXiao, Yunhai, Chunjie Wu y Soon-Yi Wu. "Norm descent conjugate gradient methods for solving symmetric nonlinear equations". Journal of Global Optimization 62, n.º 4 (11 de julio de 2014): 751–62. http://dx.doi.org/10.1007/s10898-014-0218-7.
Texto completoQiu, Yixuan y Xiao Wang. "Stochastic Approximate Gradient Descent via the Langevin Algorithm". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 5428–35. http://dx.doi.org/10.1609/aaai.v34i04.5992.
Texto completoYang, Yin y Yunqing Huang. "Spectral-Collocation Methods for Fractional Pantograph Delay-Integrodifferential Equations". Advances in Mathematical Physics 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/821327.
Texto completoPoggio, Tomaso, Andrzej Banburski y Qianli Liao. "Theoretical issues in deep networks". Proceedings of the National Academy of Sciences 117, n.º 48 (9 de junio de 2020): 30039–45. http://dx.doi.org/10.1073/pnas.1907369117.
Texto completoTesis sobre el tema "Approximate norm descent methods"
Sgattoni, Cristina. "Solving systems of nonlinear equations via spectral residual methods". Doctoral thesis, 2021. http://hdl.handle.net/2158/1238325.
Texto completoCapítulos de libros sobre el tema "Approximate norm descent methods"
Hiriart-Urruty, Jean-Baptiste y Claude Lemaréchal. "Inner Construction of the Approximate Subdifferential: Methods of ε-Descent". En Grundlehren der mathematischen Wissenschaften, 195–222. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-06409-2_5.
Texto completoAkulenko, Leonid D. "Approximate Synthesis of Optimal Control for Perturbed Systems with Invariant Norm". En Problems and Methods of Optimal Control, 223–80. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1194-2_7.
Texto completoAlbreem, Mahmoud. "Efficient Iterative Massive MIMO Detectors Based on Iterative Matrix Inversion Methods". En Design Methodologies and Tools for 5G Network Development and Application, 175–95. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4610-9.ch009.
Texto completoP., Umamaheswari. "Water-Level Prediction Utilizing Datamining Techniques in Watershed Management". En Advances in IT Standards and Standardization Research, 261–75. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9795-8.ch017.
Texto completoMkhytaryan, Olha y Inna Rodionova. "FORMATION OF READING COMPETENCE OF FUTURE DICTIONARIES IN THE CONTEXT OF TECHNOLOGICAL LEARNING (ON THE EXAMPLE OF ANALYSIS OF POETRY BY M. DRY-KHMARY)". En Trends of philological education development in the context of European integration. Publishing House “Baltija Publishing”, 2021. http://dx.doi.org/10.30525/978-9934-26-069-8-8.
Texto completoActas de conferencias sobre el tema "Approximate norm descent methods"
Merrill, William, Vivek Ramanujan, Yoav Goldberg, Roy Schwartz y Noah A. Smith. "Effects of Parameter Norm Growth During Transformer Training: Inductive Bias from Gradient Descent". En Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.emnlp-main.133.
Texto completoRen, Yong y Jun Zhu. "Distributed Accelerated Proximal Coordinate Gradient Methods". En Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/370.
Texto completoNie, Feiping, Zhouyuan Huo y Heng Huang. "Joint Capped Norms Minimization for Robust Matrix Recovery". En Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/356.
Texto completoRayces, J. L. y Lan Lebich. "Hybrid method of lens optimization". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.mf4.
Texto completoStojkovic, Ivan, Vladisav Jelisavcic, Veljko Milutinovic y Zoran Obradovic. "Fast Sparse Gaussian Markov Random Fields Learning Based on Cholesky Factorization". En Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/384.
Texto completoXu, Yuhui, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Yingyong Qi, Yiran Chen, Weiyao Lin y Hongkai Xiong. "TRP: Trained Rank Pruning for Efficient Deep Neural Networks". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/136.
Texto completoGaymann, A., F. Montomoli y M. Pietropaoli. "Design for Additive Manufacturing: Valves Without Moving Parts". En ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64872.
Texto completo