Artículos de revistas sobre el tema "Approximate Mining"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Approximate Mining".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Livshits, Ester, Alireza Heidari, Ihab F. Ilyas y Benny Kimelfeld. "Approximate denial constraints". Proceedings of the VLDB Endowment 13, n.º 10 (junio de 2020): 1682–95. http://dx.doi.org/10.14778/3401960.3401966.
Texto completoYip, Kelly K. y David A. Nembhard. "Mining approximate sequential patterns with gaps". International Journal of Data Mining, Modelling and Management 7, n.º 2 (2015): 108. http://dx.doi.org/10.1504/ijdmmm.2015.069249.
Texto completoCombi, Carlo y Pietro Sala. "Mining approximate interval-based temporal dependencies". Acta Informatica 53, n.º 6-8 (14 de septiembre de 2015): 547–85. http://dx.doi.org/10.1007/s00236-015-0246-x.
Texto completoChen, Yan y Aijun An. "Approximate Parallel High Utility Itemset Mining". Big Data Research 6 (diciembre de 2016): 26–42. http://dx.doi.org/10.1016/j.bdr.2016.07.001.
Texto completoSu, Na, Zhe Hui Wu, Ji Min Liu, Tai An Liu, Xin Jun An y Chang Qing Yan. "Mining Approximate Frequent Itemsets over Data Streams". Applied Mechanics and Materials 685 (octubre de 2014): 536–39. http://dx.doi.org/10.4028/www.scientific.net/amm.685.536.
Texto completoSilvestri, Claudio y Salvatore Orlando. "Approximate mining of frequent patterns on streams". Intelligent Data Analysis 11, n.º 1 (15 de marzo de 2007): 49–73. http://dx.doi.org/10.3233/ida-2007-11104.
Texto completoMcCoy, Corren G., Michael L. Nelson y Michele C. Weigle. "Mining the Web to approximate university rankings". Information Discovery and Delivery 46, n.º 3 (20 de agosto de 2018): 173–83. http://dx.doi.org/10.1108/idd-05-2018-0014.
Texto completoMazlack, Lawrence J. "Approximate reasoning applied to unsupervised database mining". International Journal of Intelligent Systems 12, n.º 5 (mayo de 1997): 391–414. http://dx.doi.org/10.1002/(sici)1098-111x(199705)12:5<391::aid-int3>3.0.co;2-i.
Texto completoBashir, Shariq y Daphne Teck Ching Lai. "Mining Approximate Frequent Itemsets Using Pattern Growth Approach". Information Technology and Control 50, n.º 4 (16 de diciembre de 2021): 627–44. http://dx.doi.org/10.5755/j01.itc.50.4.29060.
Texto completoCHEN, Siyu, Ning WANG y Mengmeng ZHANG. "Mining Approximate Primary Functional Dependency on Web Tables". IEICE Transactions on Information and Systems E102.D, n.º 3 (1 de marzo de 2019): 650–54. http://dx.doi.org/10.1587/transinf.2018edl8130.
Texto completoSuperfesky, Michael J. "ACHIEVING APPROXIMATE ORIGINAL CONTOUR IN MOUNTAIN TOP MINING". Journal American Society of Mining and Reclamation 2000, n.º 1 (2000): 487–92. http://dx.doi.org/10.21000/jasmr00010487.
Texto completoYun, Unil, Keun Ho Ryu y Eunchul Yoon. "Weighted approximate sequential pattern mining within tolerance factors". Intelligent Data Analysis 15, n.º 4 (23 de junio de 2011): 551–69. http://dx.doi.org/10.3233/ida-2011-0482.
Texto completoBaek, Yoonji, Unil Yun, Heonho Kim, Jongseong Kim, Bay Vo, Tin Truong y Zhi-Hong Deng. "Approximate high utility itemset mining in noisy environments". Knowledge-Based Systems 212 (enero de 2021): 106596. http://dx.doi.org/10.1016/j.knosys.2020.106596.
Texto completoGupta, Parul, Swati Agnihotri y Suman Saha. "Approximate Data Mining Using Sketches for Massive Data". Procedia Technology 10 (2013): 781–87. http://dx.doi.org/10.1016/j.protcy.2013.12.422.
Texto completoUppal, Veepu. "An Efficient Algorithm for Approximate Frequent Intemset Mining". International Journal of Database Theory and Application 8, n.º 3 (30 de junio de 2015): 279–88. http://dx.doi.org/10.14257/ijdta.2015.8.3.24.
Texto completoNakamura, Atsuyoshi, Ichigaku Takigawa, Hisashi Tosaka, Mineichi Kudo y Hiroshi Mamitsuka. "Mining approximate patterns with frequent locally optimal occurrences". Discrete Applied Mathematics 200 (febrero de 2016): 123–52. http://dx.doi.org/10.1016/j.dam.2015.07.002.
Texto completoTang, Huijun, Le Wang, Yangguang Liu y Jiangbo Qian. "Discovering Approximate and Significant High-Utility Patterns from Transactional Datasets". Journal of Mathematics 2022 (16 de noviembre de 2022): 1–17. http://dx.doi.org/10.1155/2022/6975130.
Texto completoHadi, Raghad M. "Best Approximate of Vector Space Model by Using SVD". Al-Mustansiriyah Journal of Science 28, n.º 2 (11 de abril de 2018): 143. http://dx.doi.org/10.23851/mjs.v28i2.509.
Texto completoNasir, Muhammad Anis Uddin, Cigdem Aslay, Gianmarco De Francisci Morales y Matteo Riondato. "Approximate Mining of Frequent -Subgraph Patterns in Evolving Graphs". ACM Transactions on Knowledge Discovery from Data 15, n.º 3 (12 de abril de 2021): 1–35. http://dx.doi.org/10.1145/3442590.
Texto completoJiadong Ren, Yufeng Tian, Haitao He, Xiao Cui y Qian Wang. "Mining approximate Time-interval sequential pattern in data stream". Journal of Convergence Information Technology 7, n.º 3 (29 de febrero de 2012): 282–91. http://dx.doi.org/10.4156/jcit.vol7.issue3.33.
Texto completoKum, Hye-Chung y Joong-Hyuk Chang. "Mining Approximate Sequential Patterns in a Large Sequence Database". KIPS Transactions:PartD 13D, n.º 2 (1 de abril de 2006): 199–206. http://dx.doi.org/10.3745/kipstd.2006.13d.2.199.
Texto completoLiao, Zhifang, Limin Liu, Xiaoping Fan, Yueshan Xie, Zhining Liao y Yan Zhang. "An outlier mining algorithm based on approximate outlier factor". International Journal of Autonomous and Adaptive Communications Systems 8, n.º 2/3 (2015): 243. http://dx.doi.org/10.1504/ijaacs.2015.069567.
Texto completoChaudhuri, Surajit, Venkatesh Ganti y Dong Xin. "Mining document collections to facilitate accurate approximate entity matching". Proceedings of the VLDB Endowment 2, n.º 1 (agosto de 2009): 395–406. http://dx.doi.org/10.14778/1687627.1687673.
Texto completoLi, Haifeng, Yuejin Zhang, Ning Zhang y Hengyue Jia. "A Heuristic Rule Based Approximate Frequent Itemset Mining Algorithm". Procedia Computer Science 91 (2016): 324–33. http://dx.doi.org/10.1016/j.procs.2016.07.087.
Texto completoYun, Unil y Keun Ho Ryu. "Approximate weighted frequent pattern mining with/without noisy environments". Knowledge-Based Systems 24, n.º 1 (febrero de 2011): 73–82. http://dx.doi.org/10.1016/j.knosys.2010.07.007.
Texto completoLiu, Yijun, Feiyue Ye, Jixue Liu y Sheng He. "Mining Approximate Keys based on Reasoning from XML Data". Applied Mathematics & Information Sciences 8, n.º 4 (1 de julio de 2014): 2005–16. http://dx.doi.org/10.12785/amis/080459.
Texto completoLiu, Shengxin y Chung Keung Poon. "On mining approximate and exact fault-tolerant frequent itemsets". Knowledge and Information Systems 55, n.º 2 (11 de julio de 2017): 361–91. http://dx.doi.org/10.1007/s10115-017-1079-4.
Texto completoAcosta-Mendoza, Niusvel, Jesús Ariel Carrasco-Ochoa, José Francisco Martínez-Trinidad, Andrés Gago-Alonso y José Eladio Medina-Pagola. "Mining clique frequent approximate subgraphs from multi-graph collections". Applied Intelligence 50, n.º 3 (19 de octubre de 2019): 878–92. http://dx.doi.org/10.1007/s10489-019-01564-8.
Texto completoYun, Unil y Eunchul Yoon. "An Efficient Approach for Mining Weighted Approximate Closed Frequent Patterns Considering Noise Constraints". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 22, n.º 06 (diciembre de 2014): 879–912. http://dx.doi.org/10.1142/s0218488514500470.
Texto completoAcosta-Mendoza, Niusvel, Andrés Gago-Alonso, Jesús Ariel Carrasco-Ochoa, José Fco Martínez-Trinidad y José E. Medina-Pagola. "Extension of Canonical Adjacency Matrices for Frequent Approximate Subgraph Mining on Multi-Graph Collections". International Journal of Pattern Recognition and Artificial Intelligence 31, n.º 08 (9 de mayo de 2017): 1750025. http://dx.doi.org/10.1142/s0218001417500252.
Texto completoValiullin, Timur, Zhexue Huang, Chenghao Wei, Jianfei Yin, Dingming Wu y Luliia Egorova. "A new approximate method for mining frequent itemsets from big data". Computer Science and Information Systems, n.º 00 (2020): 15. http://dx.doi.org/10.2298/csis200124015v.
Texto completoHUANG, Chong-Zheng, Hai-Feng LI y Hong CHEN. "An Approximate Non-Derivable Itemset Mining Algorithm over Data Streams". Chinese Journal of Computers 33, n.º 8 (1 de diciembre de 2010): 1427–36. http://dx.doi.org/10.3724/sp.j.1016.2010.01427.
Texto completoAtoum, Jalal. "Approximate Functional Dependencies Mining Using Association Rules Specificity Interestingness Measure". British Journal of Mathematics & Computer Science 15, n.º 5 (10 de enero de 2016): 1–10. http://dx.doi.org/10.9734/bjmcs/2016/25206.
Texto completoLucchese, Claudio, Salvatore Orlando y Raffaele Perego. "A Unifying Framework for Mining Approximate Top- $k$ Binary Patterns". IEEE Transactions on Knowledge and Data Engineering 26, n.º 12 (diciembre de 2014): 2900–2913. http://dx.doi.org/10.1109/tkde.2013.181.
Texto completoGuo, Lichao, Hongye Su y Yu Qu. "Approximate mining of global closed frequent itemsets over data streams". Journal of the Franklin Institute 348, n.º 6 (agosto de 2011): 1052–81. http://dx.doi.org/10.1016/j.jfranklin.2011.04.006.
Texto completoYu, Xiaomei, Hong Wang y Xiangwei Zheng. "Mining top-k approximate closed patterns in an imprecise database". International Journal of Grid and Utility Computing 9, n.º 2 (2018): 97. http://dx.doi.org/10.1504/ijguc.2018.091696.
Texto completoZheng, Xiangwei, Xiaomei Yu y Hong Wang. "Mining top-k approximate closed patterns in an imprecise database". International Journal of Grid and Utility Computing 9, n.º 2 (2018): 97. http://dx.doi.org/10.1504/ijguc.2018.10012791.
Texto completoHe, Dan, Xingquan Zhu y Xindong Wu. "MINING APPROXIMATE REPEATING PATTERNS FROM SEQUENCE DATA WITH GAP CONSTRAINTS". Computational Intelligence 27, n.º 3 (agosto de 2011): 336–62. http://dx.doi.org/10.1111/j.1467-8640.2011.00383.x.
Texto completoWu, Youxi, Bojing Jian, Yan Li, He Jiang y Xindong Wu. "NetNDP: Nonoverlapping (delta, gamma)-approximate pattern matching". Intelligent Data Analysis 26, n.º 6 (12 de noviembre de 2022): 1661–82. http://dx.doi.org/10.3233/ida-216325.
Texto completoChang, Chia-Yo, Jason T. L. Wang y Roger K. Chang. "Scientific Data Mining: A Case Study". International Journal of Software Engineering and Knowledge Engineering 08, n.º 01 (marzo de 1998): 77–96. http://dx.doi.org/10.1142/s0218194098000078.
Texto completoKuzniar, Krystyna, Krystyna Stec y Tadeusz Tatara. "Approximate classification of mining tremors harmfulness based on free-field and building foundation vibrations". E3S Web of Conferences 36 (2018): 01006. http://dx.doi.org/10.1051/e3sconf/20183601006.
Texto completoJiadong Ren, Yufeng Tian y Haitao He. "Bitmap-based Algorithm of Mining Approximate Sequential Pattern in Data Stream". INTERNATIONAL JOURNAL ON Advances in Information Sciences and Service Sciences 3, n.º 9 (31 de octubre de 2011): 132–39. http://dx.doi.org/10.4156/aiss.vol3.issue9.18.
Texto completoPyun, Gwangbum y Unil Yun. "Performance evaluation of approximate frequent pattern mining based on probabilistic technique". Journal of Korean Society for Internet Information 14, n.º 1 (28 de febrero de 2013): 63–69. http://dx.doi.org/10.7472/jksii.2013.14.63.
Texto completoWANG, Wei-Ping. "An Efficient Algorithm for Mining Approximate Frequent Item over Data Streams". Journal of Software 18, n.º 4 (2007): 884. http://dx.doi.org/10.1360/jos180884.
Texto completoLee, Gangin, Unil Yun, Heungmo Ryang y Donggyu Kim. "Approximate Maximal Frequent Pattern Mining with Weight Conditions and Error Tolerance". International Journal of Pattern Recognition and Artificial Intelligence 30, n.º 06 (9 de mayo de 2016): 1650012. http://dx.doi.org/10.1142/s0218001416500129.
Texto completoLiu, Haibin, Lawrence Hunter, Vlado Kešelj y Karin Verspoor. "Approximate Subgraph Matching-Based Literature Mining for Biomedical Events and Relations". PLoS ONE 8, n.º 4 (17 de abril de 2013): e60954. http://dx.doi.org/10.1371/journal.pone.0060954.
Texto completoAcosta-Mendoza, Niusvel, Andrés Gago-Alonso, Jesús Ariel Carrasco-Ochoa, José Francisco Martínez-Trinidad y José Eladio Medina-Pagola. "A new algorithm for approximate pattern mining in multi-graph collections". Knowledge-Based Systems 109 (octubre de 2016): 198–207. http://dx.doi.org/10.1016/j.knosys.2016.07.003.
Texto completoYu, Xiaomei, Jun Zhao, Hong Wang, Xiangwei Zheng y Xiaoyan Yan. "A model of mining approximate frequent itemsets using rough set theory". International Journal of Computational Science and Engineering 19, n.º 1 (2019): 71. http://dx.doi.org/10.1504/ijcse.2019.099640.
Texto completoYan, Xiaoyan, Jun Zhao, Hong Wang, Xiangwei Zheng y Xiaomei Yu. "A model of mining approximate frequent itemsets using rough set theory". International Journal of Computational Science and Engineering 19, n.º 1 (2019): 71. http://dx.doi.org/10.1504/ijcse.2019.10020958.
Texto completoAridhi, Sabeur, Laurent d'Orazio, Mondher Maddouri y Engelbert Mephu Nguifo. "Density-based data partitioning strategy to approximate large-scale subgraph mining". Information Systems 48 (marzo de 2015): 213–23. http://dx.doi.org/10.1016/j.is.2013.08.005.
Texto completo