Literatura académica sobre el tema "Approaches to learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Approaches to learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Approaches to learning"
Urhahne, Detlef. "Learning approaches". Educational Psychology 40, n.º 5 (27 de mayo de 2020): 533–34. http://dx.doi.org/10.1080/01443410.2020.1755503.
Texto completoWiltshire, Monica. "Approaches to learning". Early Years Educator 17, n.º 11 (2 de marzo de 2016): 28–30. http://dx.doi.org/10.12968/eyed.2016.17.11.28.
Texto completoDuff, Angus y Sam McKinstry. "Students' Approaches to Learning". Issues in Accounting Education 22, n.º 2 (1 de mayo de 2007): 183–214. http://dx.doi.org/10.2308/iace.2007.22.2.183.
Texto completoWasson, Barbara y Paul A. Kirschner. "Learning Design: European Approaches". TechTrends 64, n.º 6 (13 de mayo de 2020): 815–27. http://dx.doi.org/10.1007/s11528-020-00498-0.
Texto completoAlbergaria-Almeida, Patrícia, José Joaquim Teixeira-Dias, Mariana Martinho y Chinthaka Balasooriya. "Kolb’s Learning Styles and Approaches to Learning". International Journal of Knowledge Society Research 1, n.º 3 (julio de 2010): 1–16. http://dx.doi.org/10.4018/jksr.2010070101.
Texto completoCuthbert, Peter F. "The student learning process: Learning styles or learning approaches?" Teaching in Higher Education 10, n.º 2 (abril de 2005): 235–49. http://dx.doi.org/10.1080/1356251042000337972.
Texto completoSharma, Divesh S. "Accounting students' learning conceptions, approaches to learning, and the influence of the learning–teaching context on approaches to learning". Accounting Education 6, n.º 2 (junio de 1997): 125–46. http://dx.doi.org/10.1080/096392897331532.
Texto completoRajaratnam, Navin y SuzanneMaria D′cruz. "Learning styles and learning approaches - Are they different?" Education for Health 29, n.º 1 (2016): 59. http://dx.doi.org/10.4103/1357-6283.178924.
Texto completoAhamad, Maksud y Nesar Ahmad. "Machine Learning Approaches to Digital Learning Performance Analysis". International Journal of Computing and Digital Systems 10, n.º 1 (25 de noviembre de 2021): 963–71. http://dx.doi.org/10.12785/ijcds/100187.
Texto completoBattou, Amal, Omar Baz y Driss Mammass. "Learning Design Approaches for Designing Virtual Learning Environments". Communications on Applied Electronics 5, n.º 9 (26 de septiembre de 2016): 31–37. http://dx.doi.org/10.5120/cae2016652369.
Texto completoTesis sobre el tema "Approaches to learning"
Potari, Despina. "Learning approaches in mathematics". Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/12130.
Texto completoHussein, Ahmed. "Deep learning based approaches for imitation learning". Thesis, Robert Gordon University, 2018. http://hdl.handle.net/10059/3117.
Texto completoEffraimidis, Dimitros. "Computation approaches for continuous reinforcement learning problems". Thesis, University of Westminster, 2016. https://westminsterresearch.westminster.ac.uk/item/q0y82/computation-approaches-for-continuous-reinforcement-learning-problems.
Texto completoChang, Yu-Han Ph D. Massachusetts Institute of Technology. "Approaches to multi-agent learning". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33932.
Texto completoIncludes bibliographical references (leaves 165-171).
Systems involving multiple autonomous entities are becoming more and more prominent. Sensor networks, teams of robotic vehicles, and software agents are just a few examples. In order to design these systems, we need methods that allow our agents to autonomously learn and adapt to the changing environments they find themselves in. This thesis explores ideas from game theory, online prediction, and reinforcement learning, tying them together to work on problems in multi-agent learning. We begin with the most basic framework for studying multi-agent learning: repeated matrix games. We quickly realize that there is no such thing as an opponent-independent, globally optimal learning algorithm. Some form of opponent assumptions must be necessary when designing multi-agent learning algorithms. We first show that we can exploit opponents that satisfy certain assumptions, and in a later chapter, we show how we can avoid being exploited ourselves. From this beginning, we branch out to study more complex sequential decision making problems in multi-agent systems, or stochastic games. We study environments in which there are large numbers of agents, and where environmental state may only be partially observable.
(cont.) In fully cooperative situations, where all the agents receive a single global reward signal for training, we devise a filtering method that allows each individual agent to learn using a personal training signal recovered from this global reward. For non-cooperative situations, we introduce the concept of hedged learning, a combination of regret-minimizing algorithms with learning techniques, which allows a more flexible and robust approach for behaving in competitive situations. We show various performance bounds that can be guaranteed with our hedged learning algorithm, thus preventing our agent from being exploited by its adversary. Finally, we apply some of these methods to problems involving routing and node movement in a mobilized ad-hoc networking domain.
by Yu-Han Chang.
Ph.D.
Flaherty, Drew. "Artistic approaches to machine learning". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/200191/1/Drew_Flaherty_Thesis.pdf.
Texto completoYu, Kai. "Statistical Learning Approaches to Information Filtering". Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-25120.
Texto completoKashima, Hisashi. "Machine learning approaches for structured data". 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/135953.
Texto completoChen, Zhe Haykin Simon S. "Stochastic approaches for correlation-based learning". *McMaster only, 2004.
Buscar texto completoBoots, Byron. "Spectral Approaches to Learning Predictive Representations". Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/131.
Texto completoPellegrini, Giovanni. "Relational Learning approaches for Recommender Systems". Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/318892.
Texto completoLibros sobre el tema "Approaches to learning"
Stobie, Tristian D. Approaches to learning. Petersfield: European Council of International Schools., 1997.
Buscar texto completoApproaches to learning. Ypsilanti, Mich: Highscope Press, 2012.
Buscar texto completoKim, Reid D., Hresko Wayne P y Swanson H. Lee 1947-, eds. Cognitive approaches to learning disabilities. 3a ed. Austin, TX: Pro-Ed, 1996.
Buscar texto completoHolistic approaches to language learning. Frankfurt am Main: P. Lang, 2005.
Buscar texto completoInc, ebrary, ed. Machine learning approaches to bioinformatics. Singapore: World Scientific, 2010.
Buscar texto completo1943-, Kueker D. W. y Smith Carl H. 1950-, eds. Learning and geometry: Computational approaches. Boston: Birkhäuser, 1996.
Buscar texto completoHarteis, Christian, David Gijbels y Eva Kyndt, eds. Research Approaches on Workplace Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89582-2.
Texto completoCutting, Roger y Rowena Passy, eds. Contemporary Approaches to Outdoor Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85095-1.
Texto completoTouretzky, David, ed. Connectionist Approaches to Language Learning. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-4008-3.
Texto completoKueker, David W. y Carl H. Smith, eds. Learning and Geometry: Computational Approaches. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4088-4.
Texto completoCapítulos de libros sobre el tema "Approaches to learning"
Singh, Nirbhay N., Diane E. D. Deitz y Judy Singh. "Behavioral Approaches". En Learning Disabilities, 375–414. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4613-9133-3_13.
Texto completoDaelemans, Walter. "Machine Learning Approaches". En Text, Speech and Language Technology, 285–304. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9273-4_17.
Texto completoYang, Ching-Chi y Lih-Yuan Deng. "Statistical Learning Approaches". En Dimensionality Reduction in Data Science, 169–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05371-9_8.
Texto completoVenugopal, Deepak y Max Garzon. "Machine Learning Approaches". En Dimensionality Reduction in Data Science, 179–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05371-9_9.
Texto completoAbbott, Tina. "Social learning approaches". En Social and Personality Development, 51–66. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003209300-6.
Texto completoLiu, Han, Alexander Gegov y Mihaela Cocea. "Ensemble Learning Approaches". En Studies in Big Data, 63–73. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23696-4_6.
Texto completoMisra, Pradeep Kumar. "Approaches to Learning". En Learning and Teaching for Teachers, 17–36. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3077-4_2.
Texto completoKim, Rina y Lillie R. Albert. "Methodological Approaches". En Mathematics Teaching and Learning, 33–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13542-7_3.
Texto completoHengst, Bernhard. "Hierarchical Approaches". En Adaptation, Learning, and Optimization, 293–323. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27645-3_9.
Texto completoLavrač, Nada, Vid Podpečan y Marko Robnik-Šikonja. "Unified Representation Learning Approaches". En Representation Learning, 143–52. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68817-2_6.
Texto completoActas de conferencias sobre el tema "Approaches to learning"
Li, Yumeng, Pingfeng Wang y Weirong Xiao. "Uncertainty Quantification of Atomistic Materials Simulation with Machine Learning Potentials". En 2018 AIAA Non-Deterministic Approaches Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2166.
Texto completoAnıktar, Serhat y Ayfer Aytuğ. "DESIGNING LEARNING SPACES TO DIFFERENT LEARNING APPROACHES". En International Technology, Education and Development Conference. IATED, 2016. http://dx.doi.org/10.21125/iceri.2016.1119.
Texto completoSen, Gabriel, Albert Adeboye y Oluwole Alagbe. "STUDENT LEARNING APPROACHES OF ARCHITECTURE STUDENTS: DEEP OR SURFACE LEARNING APPROACH". En 14th International Technology, Education and Development Conference. IATED, 2020. http://dx.doi.org/10.21125/inted.2020.2588.
Texto completoYuen, Andrew. "Blended learning in economics and finance courses at business school". En International Conference on New Approaches in Education. Global, 2019. http://dx.doi.org/10.33422/icnaeducation.2019.07.394.
Texto completoIsaac, Benson y Douglas L. Allaire. "A Dynamic Data-Driven Approach to Optimal Offline Learning for Online Flight Capability Estimation". En 18th AIAA Non-Deterministic Approaches Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1444.
Texto completoYılmaz, Veysel. "Financial Machine Learning". En 4th International Symposium on Innovative Approaches in Social, Human and Administrative Sciences. SETSCI, 2019. http://dx.doi.org/10.36287/setsci.4.8.035.
Texto completoKhalil, Mohammad. "Probabilistic Approaches to Transfer Learning." En Proposed for presentation at the 4th annual Sandia Machine Learning and Deep Learning Workshop held July 19-22, 2021 in ,. US DOE, 2021. http://dx.doi.org/10.2172/1882483.
Texto completoTena Cucala, David J., Bernardo Cuenca Grau y Boris Motik. "Faithful Approaches to Rule Learning". En 19th International Conference on Principles of Knowledge Representation and Reasoning {KR-2022}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/kr.2022/50.
Texto completoShehu Kabir, Fatima. "Application of Unified Theory of Acceptance and Use of Technology to Learning Management System Use: A Study of Ahmadu Bello University Distance Learning Centre". En 3rd International Conference on New Approaches in Education. GLOBALKS, 2021. http://dx.doi.org/10.33422/3rd.icnaeducation.2021.07.26.
Texto completoWen, Xue. "MOOC Learning Outcome Prediction Using Machine Learning Approaches". En 2022 AERA Annual Meeting. Washington DC: AERA, 2022. http://dx.doi.org/10.3102/1885130.
Texto completoInformes sobre el tema "Approaches to learning"
Tucker, Jennifer S. Mobile Learning Approaches for U.S. Army Training. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2010. http://dx.doi.org/10.21236/ada528742.
Texto completoVillavicencio, Xuzel y Caitlin Coflan. Hybrid learning International experiences with multimodal approaches. EdTech Hub, julio de 2022. http://dx.doi.org/10.53832/edtechhub.0112.
Texto completoGress, Gabriel. Understanding machine learning approaches for partial differential equations. Office of Scientific and Technical Information (OSTI), septiembre de 2020. http://dx.doi.org/10.2172/1669073.
Texto completoBhagavatula, Vijayakumar. Advanced Signal Processing and Machine Learning Approaches for EEG Analysis. Fort Belvoir, VA: Defense Technical Information Center, julio de 2010. http://dx.doi.org/10.21236/ada535204.
Texto completoTillett, Will y Oliver Jones. ‘Improving Rural Sanitation in Challenging Contexts’ Sanitation Learning Hub Learning Brief 8. The Sanitation Learning Hub, Institute of Development Studies, marzo de 2021. http://dx.doi.org/10.19088/slh.2021.006.
Texto completoMeeker, Jessica. Mutual Learning for Policy Impact: Insights from CORE. Sharing Experience and Learning on Approaches to Influence Policy and Practice. Institute of Development Studies (IDS), agosto de 2021. http://dx.doi.org/10.19088/core.2021.005.
Texto completoGrogger, Jeffrey, Sean Gupta, Ria Ivandic y Tom Kirchmaier. Comparing Conventional and Machine-Learning Approaches to Risk Assessment in Domestic Abuse Cases. Cambridge, MA: National Bureau of Economic Research, diciembre de 2020. http://dx.doi.org/10.3386/w28293.
Texto completoSihi, Debjani, Kanad Basu y Debjani Singh. Improved Understanding of Coupled Water and Carbon Cycle Processes through Machine Learning Approaches. Office of Scientific and Technical Information (OSTI), abril de 2021. http://dx.doi.org/10.2172/1769721.
Texto completoZeidenstein, Sondra y Kirsten Moore. Learning About Sexuality: A Practical Beginning. Population Council, 1996. http://dx.doi.org/10.31899/pgy1996.1007.
Texto completoMa, Yue y Felix Distel. Learning Formal Definitions for Snomed CT from Text. Technische Universität Dresden, 2013. http://dx.doi.org/10.25368/2022.193.
Texto completo