Literatura académica sobre el tema "Apprentissage en continu"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Apprentissage en continu".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Apprentissage en continu"
Claude, Armand. "L’éducation des adultes en Suisse : pluralisme associatif ou à la recherche d’une politique coopérative". Selon des essais de politique..., n.º 9 (25 de enero de 2016): 201–6. http://dx.doi.org/10.7202/1034732ar.
Texto completoGuivarch, Valérian, Valérie Camps, André Péninou y Pierre Glize. "Apprentissage comportemental en continu de dispositifs ambiants par systèmes multi-agents adaptatifs". Revue d'intelligence artificielle 29, n.º 1 (28 de febrero de 2015): 83–112. http://dx.doi.org/10.3166/ria.29.83-112.
Texto completoMaillet, Bernard y Hervé Maisonneuve. "Apprentissage tout au long de la vie pour les médecins spécialistes en Europe : formation médicale continue, développement professionnel continu et qualifications". La Presse Médicale 40, n.º 4 (abril de 2011): 357–65. http://dx.doi.org/10.1016/j.lpm.2011.01.014.
Texto completoJurkova, Sinela y Shibao Guo. "Connecting Transculturalism with Transformative Learning: Toward a New Horizon of Adult Education". Alberta Journal of Educational Research 64, n.º 2 (22 de junio de 2018): 173–87. http://dx.doi.org/10.55016/ojs/ajer.v64i2.56383.
Texto completoVieille-Grosjean, Henri y Gabriel Di Patrizio. "Apprendre à l’âge adulte : entre imitation et émancipation". Phronesis 4, n.º 1 (18 de junio de 2015): 40–50. http://dx.doi.org/10.7202/1031203ar.
Texto completoLuis Eduardo Hernández Coronado. "Retos y desafíos para el docente desde la mirada del sistema institucional de evaluación de los estudiantes". GACETA DE PEDAGOGÍA, n.º 40 (20 de agosto de 2021): 243–58. http://dx.doi.org/10.56219/rgp.vi40.924.
Texto completoResnik, Salomon. "Transmission et apprentissage". Revue de psychothérapie psychanalytique de groupe 21, n.º 1 (1993): 25–41. http://dx.doi.org/10.3406/rppg.1993.1200.
Texto completoLentillon-Kaestner, Vanessa y Magali Bovas. "Des évaluations pour les apprentissages en badminton". L'Education physique en mouvement, n.º 8 (17 de diciembre de 2022): 19–24. http://dx.doi.org/10.26034/vd.epm.2022.3552.
Texto completoFontaine, Sylvie, Lorraine Savoie-Zajc y Alain Cadieux. "L’impact des CAP sur le développement de la compétence des enseignants en évaluation des apprentissages". Éducation et francophonie 41, n.º 2 (18 de diciembre de 2013): 10–34. http://dx.doi.org/10.7202/1021025ar.
Texto completoPESQUEIRA, F., C. RENOUX y D. MALLET. "DEVELOPPEMENT DE LA COMPETENCE "RELATION, COMMUNICATION, APPROCHE CENTREE PATIENT" EN STAGE DANS UNE STRUCTURE DE SOINS PALLIATIFS". EXERCER 33, n.º 180 (1 de febrero de 2022): 88–94. http://dx.doi.org/10.56746/exercer.2022.180.88.
Texto completoTesis sobre el tema "Apprentissage en continu"
Munos, Rémi. "Apprentissage par renforcement, étude du cas continu". Paris, EHESS, 1997. http://www.theses.fr/1997EHESA021.
Texto completoSors, Arnaud. "Apprentissage profond pour l'analyse de l'EEG continu". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAS006/document.
Texto completoThe objective of this research is to explore and develop machine learning methods for the analysis of continuous electroencephalogram (EEG). Continuous EEG is an interesting modality for functional evaluation of cerebral state in the intensive care unit and beyond. Today its clinical use remains more limited that it could be because interpretation is still mostly performed visually by trained experts. In this work we develop automated analysis tools based on deep neural models.The subparts of this work hinge around post-anoxic coma prognostication, chosen as pilot application. A small number of long-duration records were performed and available existing data was gathered from CHU Grenoble. Different components of a semi-supervised architecture that addresses the application are imagined, developed, and validated on surrogate tasks.First, we validate the effectiveness of deep neural networks for EEG analysis from raw samples. For this we choose the supervised task of sleep stage classification from single-channel EEG. We use a convolutional neural network adapted for EEG and we train and evaluate the system on the SHHS (Sleep Heart Health Study) dataset. This constitutes the first neural sleep scoring system at this scale (5000 patients). Classification performance reaches or surpasses the state of the art.In real use for most clinical applications, the main challenge is the lack of (and difficulty of establishing) suitable annotations on patterns or short EEG segments. Available annotations are high-level (for example, clinical outcome) and therefore they are few. We search how to learn compact EEG representations in an unsupervised/semi-supervised manner. The field of unsupervised learning using deep neural networks is still young. To compare to existing work we start with image data and investigate the use of generative adversarial networks (GANs) for unsupervised adversarial representation learning. The quality and stability of different variants are evaluated. We then apply Gradient-penalized Wasserstein GANs on EEG sequences generation. The system is trained on single channel sequences from post-anoxic coma patients and is able to generate realistic synthetic sequences. We also explore and discuss original ideas for learning representations through matching distributions in the output space of representative networks.Finally, multichannel EEG signals have specificities that should be accounted for in characterization architectures. Each EEG sample is an instantaneous mixture of the activities of a number of sources. Based on this statement we propose an analysis system made of a spatial analysis subsystem followed by a temporal analysis subsystem. The spatial analysis subsystem is an extension of source separation methods built with a neural architecture with adaptive recombination weights, i.e. weights that are not learned but depend on features of the input. We show that this architecture learns to perform Independent Component Analysis if it is trained on a measure of non-gaussianity. For temporal analysis, standard (shared) convolutional neural networks applied on separate recomposed channels can be used
Zimmer, Matthieu. "Apprentissage par renforcement développemental". Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0008/document.
Texto completoReinforcement learning allows an agent to learn a behavior that has never been previously defined by humans. The agent discovers the environment and the different consequences of its actions through its interaction: it learns from its own experience, without having pre-established knowledge of the goals or effects of its actions. This thesis tackles how deep learning can help reinforcement learning to handle continuous spaces and environments with many degrees of freedom in order to solve problems closer to reality. Indeed, neural networks have a good scalability and representativeness. They make possible to approximate functions on continuous spaces and allow a developmental approach, because they require little a priori knowledge on the domain. We seek to reduce the amount of necessary interaction of the agent to achieve acceptable behavior. To do so, we proposed the Neural Fitted Actor-Critic framework that defines several data efficient actor-critic algorithms. We examine how the agent can fully exploit the transitions generated by previous behaviors by integrating off-policy data into the proposed framework. Finally, we study how the agent can learn faster by taking advantage of the development of his body, in particular, by proceeding with a gradual increase in the dimensionality of its sensorimotor space
Zimmer, Matthieu. "Apprentissage par renforcement développemental". Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0008.
Texto completoReinforcement learning allows an agent to learn a behavior that has never been previously defined by humans. The agent discovers the environment and the different consequences of its actions through its interaction: it learns from its own experience, without having pre-established knowledge of the goals or effects of its actions. This thesis tackles how deep learning can help reinforcement learning to handle continuous spaces and environments with many degrees of freedom in order to solve problems closer to reality. Indeed, neural networks have a good scalability and representativeness. They make possible to approximate functions on continuous spaces and allow a developmental approach, because they require little a priori knowledge on the domain. We seek to reduce the amount of necessary interaction of the agent to achieve acceptable behavior. To do so, we proposed the Neural Fitted Actor-Critic framework that defines several data efficient actor-critic algorithms. We examine how the agent can fully exploit the transitions generated by previous behaviors by integrating off-policy data into the proposed framework. Finally, we study how the agent can learn faster by taking advantage of the development of his body, in particular, by proceeding with a gradual increase in the dimensionality of its sensorimotor space
Lefort, Mathieu. "Apprentissage spatial de corrélations multimodales par des mécanismes d'inspiration corticale". Phd thesis, Université Nancy II, 2012. http://tel.archives-ouvertes.fr/tel-00756687.
Texto completoMainsant, Marion. "Apprentissage continu sous divers scénarios d'arrivée de données : vers des applications robustes et éthiques de l'apprentissage profond". Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALS045.
Texto completoThe human brain continuously receives information from external stimuli. It then has the ability to adapt to new knowledge while retaining past events. Nowadays, more and more artificial intelligence algorithms aim to learn knowledge in the same way as a human being. They therefore have to be able to adapt to a large variety of data arriving sequentially and available over a limited period of time. However, when a deep learning algorithm learns new data, the knowledge contained in the neural network overlaps old one and the majority of the past information is lost, a phenomenon referred in the literature as catastrophic forgetting. Numerous methods have been proposed to overcome this issue, but as they were focused on providing the best performance, studies have moved away from real-life applications where algorithms need to adapt to changing environments and perform, no matter the type of data arrival. In addition, most of the best state of the art methods are replay methods which retain a small memory of the past and consequently do not preserve data privacy.In this thesis, we propose to explore data arrival scenarios existing in the literature, with the aim of applying them to facial emotion recognition, which is essential for human-robot interactions. To this end, we present Dream Net - Data-Free, a privacy preserving algorithm, able to adapt to a large number of data arrival scenarios without storing any past samples. After demonstrating the robustness of this algorithm compared to existing state-of-the-art methods on standard computer vision databases (Mnist, Cifar-10, Cifar-100 and Imagenet-100), we show that it can also adapt to more complex facial emotion recognition databases. We then propose to embed the algorithm on a Nvidia Jetson nano card creating a demonstrator able to learn and predict emotions in real-time. Finally, we discuss the relevance of our approach for bias mitigation in artificial intelligence, opening up perspectives towards a more ethical AI
Lesort, Timothée. "Continual Learning : Tackling Catastrophic Forgetting in Deep Neural Networks with Replay Processes". Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAE003.
Texto completoHumans learn all their life long. They accumulate knowledge from a sequence of learning experiences and remember the essential concepts without forgetting what they have learned previously. Artificial neural networks struggle to learn similarly. They often rely on data rigorously preprocessed to learn solutions to specific problems such as classification or regression.In particular, they forget their past learning experiences if trained on new ones.Therefore, artificial neural networks are often inept to deal with real-lifesuch as an autonomous-robot that have to learn on-line to adapt to new situations and overcome new problems without forgetting its past learning-experiences.Continual learning (CL) is a branch of machine learning addressing this type of problems.Continual algorithms are designed to accumulate and improve knowledge in a curriculum of learning-experiences without forgetting.In this thesis, we propose to explore continual algorithms with replay processes.Replay processes gather together rehearsal methods and generative replay methods.Generative Replay consists of regenerating past learning experiences with a generative model to remember them. Rehearsal consists of saving a core-set of samples from past learning experiences to rehearse them later. The replay processes make possible a compromise between optimizing the current learning objective and the past ones enabling learning without forgetting in sequences of tasks settings.We show that they are very promising methods for continual learning. Notably, they enable the re-evaluation of past data with new knowledge and the confrontation of data from different learning-experiences. We demonstrate their ability to learn continually through unsupervised learning, supervised learning and reinforcement learning tasks
Lefort, Mathieu. "Apprentissage spatial de corrélations multimodales par des mécanismes d'inspiration corticale". Electronic Thesis or Diss., Université de Lorraine, 2012. http://www.theses.fr/2012LORR0106.
Texto completoThis thesis focuses on unifying multiple modal data flows that may be provided by sensors of an agent. This unification, inspired by psychological experiments like the ventriloquist effect, is based on detecting correlations which are defined as temporally recurrent spatial patterns that appear in the input flows. Learning of the input flow correlations space consists on sampling this space and generalizing theselearned samples. This thesis proposed some functional paradigms for multimodal data processing, leading to the connectionist, generic, modular and cortically inspired architecture SOMMA (Self-Organizing Maps for Multimodal Association). In this model, each modal stimulus is processed in a cortical map. Interconnectionof these maps provides an unifying multimodal data processing. Sampling and generalization of correlations are based on the constrained self-organization of each map. The model is characterised by a gradual emergence of these functional properties : monomodal properties lead to the emergence of multimodal ones and learning of correlations in each map precedes self-organization of these maps.Furthermore, the use of a connectionist architecture and of on-line and unsupervised learning provides plasticity and robustness properties to the data processing in SOMMA. Classical artificial intelligence models usually miss such properties
Oulhadj, Hamouche. "Des primitives aux lettres : une méthode structurelle de reconnaissance en ligne de mots d'écriture cursive manuscrite avec un apprentissage continu". Paris 12, 1990. http://www.theses.fr/1990PA120045.
Texto completoDouillard, Arthur. "Continual Learning for Computer Vision". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS165.
Texto completoI first review the existing methods based on regularization for continual learning. While regularizing a model's probabilities is very efficient to reduce forgetting in large-scale datasets, there are few works considering constraints on intermediate features. I cover in this chapter two contributions aiming to regularize directly the latent space of ConvNet. The first one, PODNet, aims to reduce the drift of spatial statistics between the old and new model, which in effect reduces drastically forgetting of old classes while enabling efficient learning of new classes. I show in a second part a complementary method where we avoid pre-emptively forgetting by allocating locations in the latent space for yet unseen future class. Then, I describe a recent application of CIL to semantic segmentation. I show that the very nature of CSS offer new specific challenges, namely forgetting on large images and a background shift. We tackle the first problem by extending our distillation loss introduced in the previous chapter to multi-scales. The second problem is solved by an efficient pseudo-labeling strategy. Finally, we consider the common rehearsal learning, but applied this time to CSS. I show that it cannot be used naively because of memory complexity and design a light-weight rehearsal that is even more efficient. Finally, I consider a completely different approach to continual learning: dynamic networks where the parameters are extended during training to adapt to new tasks. Previous works on this domain are hard to train and often suffer from parameter count explosion. For the first time in continual computer vision, we propose to use the Transformer architecture: the model dimension mostly fixed and shared across tasks, except for an expansion of learned task tokens. With an encoder/decoder strategy where the decoder forward is specialized by a task token, we show state-of-the-art robustness to forgetting while our memory and computational complexities barely grow
Libros sobre el tema "Apprentissage en continu"
Philippe, Méhaut, ed. Apprentissage ou formation continue?: Stratégies éducatives des entreprises en Allemagne et en France. Paris: L'Harmattan, 1993.
Buscar texto completoVivre sainement: Formation personnelle et sociale : 4e secondaire : Cahier d'activités et de contenu. Montréal: Lidec, 1996.
Buscar texto completoP, Kauchak Donald, ed. Strategies forteachers: Teaching content and thinking skills. 2a ed. Englewood Cliffs: Prentice-Hall, 1988.
Buscar texto completo1957-, Ackerman Phillip Lawrence, Kyllonen Patrick C y Roberts Richard D, eds. Learning and individual differences: Process, trait, and content determinants. Washington, DC: American Psychological Association, 1999.
Buscar texto completoSivasailam, Thiagarajan y Jilème, eds. Modèles de jeux de formation: Les jeux-cadres de Thiagi. 3a ed. Paris: Eyrolles-Éd. d'Organisation, 2007.
Buscar texto completo1946-, Kauchak Donald P., ed. Strategies for teachers: Teaching content and thinking skills. 4a ed. Boston: Allyn and Bacon, 2001.
Buscar texto completoEggen, Paul D. Strategies for teachers: Teaching content and thinking skills. 3a ed. Boston: Allyn and Bacon, 1996.
Buscar texto completoEggen, Paul D. Strategies for teachers: Teaching content and thinking skills. 2a ed. Englewood Cliffs, N.J: Prentice-Hall, 1988.
Buscar texto completo1952-, Brown Steven y Smith Dorolyn, eds. Active listening: Expanding understanding through content. 3a ed. Cambridge [England]: Cambridge University Press, 1997.
Buscar texto completoK, Srull Thomas, Wyer Robert S y Smith Eliot R, eds. Content and process specificity in the effects of prior experiences. Hillsdale, N.J: Lawrence Erlbaum Associates, 1990.
Buscar texto completoCapítulos de libros sobre el tema "Apprentissage en continu"
"Une Formation Individualisée, Active et Continue". En Pour Une Société En Apprentissage, 115–55. Les Presses de l’Université de Laval, 1997. http://dx.doi.org/10.1515/9782763712383-005.
Texto completoFinita Shey, Jirndi. "Chapitre 3 : External factors impeding effective implementation of teaching/learning contents prescribed for national languages at the observation sub-cycle". En Méthodes et pratiques d’enseignement des langues africaines : Identification, analyses et perspective, 75–93. Observatoire européen du plurilinguisme, 2019. http://dx.doi.org/10.3917/oep.ndibn.2019.01.0075.
Texto completoCOGRANNE, Rémi, Marc CHAUMONT y Patrick BAS. "Stéganalyse : détection d’information cachée dans des contenus multimédias". En Sécurité multimédia 1, 261–303. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9026.ch8.
Texto completoSORÉ, Zakaria. "Inégalités sociales et continuité pédagogique en temps du COVID-19 dans la ville de Ouagadougou (Burkina Faso)". En Les écoles africaines à l’ère du COVID-19, 241–58. Editions des archives contemporaines, 2024. http://dx.doi.org/10.17184/eac.7932.
Texto completoUCHEREK, Witold. "Le traitement lexicographique de la préposition sprzed dans les dictionnaires polonais-français". En Dictionnaires et apprentissage des langues, 51–64. Editions des archives contemporaines, 2021. http://dx.doi.org/10.17184/eac.4503.
Texto completoWANG, Xinxia, Xialing SHEN y Jing GUO. "La métaphore dans les dictionnaires bilingues d’apprentissage :". En Dictionnaires et apprentissage des langues, 79–88. Editions des archives contemporaines, 2021. http://dx.doi.org/10.17184/eac.4627.
Texto completoSZITA, Szilvia. "Au-delà du glossaire". En Dictionnaires et apprentissage des langues, 65–78. Editions des archives contemporaines, 2021. http://dx.doi.org/10.17184/eac.4504.
Texto completoTIAN, Bing, Jianhua HUANG y Fang HUANG. "J. Huang’s "Grand contemporary chinese-french dictionary (2014)" and the story behind it". En Dictionnaires et apprentissage des langues, 103–19. Editions des archives contemporaines, 2021. http://dx.doi.org/10.17184/eac.4506.
Texto completoHeimberg, Charles. "Grammaire de l’histoire et contenus épistémologiques de son enseignement-apprentissage". En Vygotski et les recherches en éducation et en didactiques, 199–216. Presses Universitaires de Bordeaux, 2008. http://dx.doi.org/10.4000/books.pub.48277.
Texto completoBERK, Cybèle. "Enseigner la grammaire turque". En Enseignement-apprentissage de la grammaire en langue vivante étrangère, 21–32. Editions des archives contemporaines, 2023. http://dx.doi.org/10.17184/eac.5810.
Texto completoInformes sobre el tema "Apprentissage en continu"
Brinkerhoff, Derick W., Sarah Frazer y Lisa McGregor. S'adapter pour apprendre et apprendre pour s'adapter : conseils pratiques tirés de projets de développement internationaux. RTI Press, enero de 2018. http://dx.doi.org/10.3768/rtipress.2018.pb.0015.1801.fr.
Texto completo