Literatura académica sobre el tema "Apprentissage de représentations vidéos"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Apprentissage de représentations vidéos".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Apprentissage de représentations vidéos"
Narcy, Jean-Paul. "Représentations, apprentissage et supports multimédias". Recherche et pratiques pédagogiques en langues de spécialité - Cahiers de l'APLIUT 17, n.º 3 (1998): 14–24. http://dx.doi.org/10.3406/apliu.1998.1154.
Texto completoLieury, Alain, Catherine Clinet, Marc Gimonet y Muriel Lefebre. "Représentations imagées et apprentissage d'un vocabulaire étranger". Bulletin de psychologie 41, n.º 386 (1988): 701–9. http://dx.doi.org/10.3406/bupsy.1988.12928.
Texto completoMilovanovic, Julie, Daniel Siret, Guillaume Moreau y Francis Miguet. "Écosystème de représentations et apprentissage de la conception". SHS Web of Conferences 47 (2018): 01003. http://dx.doi.org/10.1051/shsconf/20184701003.
Texto completoHess, Emmanuelle. "nouvelles représentations des minorités dans les Jeux vidéos : enjeux et significations". ALTERNATIVE FRANCOPHONE 2, n.º 8 (15 de enero de 2021): 65–82. http://dx.doi.org/10.29173/af29412.
Texto completoSánchez Abchi, Verónica y Amelia Lambelet. "Enseignement/apprentissage des langues et cultures d’origine: changements, synergies et représentations". Babylonia Journal of Language Education 1 (25 de abril de 2023): 8–11. http://dx.doi.org/10.55393/babylonia.v1i.277.
Texto completoAuger, Nathalie. "L’enseignement-apprentissage de la langue française en France. Dé-complexifier la question". Diversité 151, n.º 1 (2007): 121–26. http://dx.doi.org/10.3406/diver.2007.2835.
Texto completoNarcy-Combes, Marie-Françoise. "Conflits de représentations et adaptation des dispositifs d’enseignement/apprentissage". Recherche et pratiques pédagogiques en langues de spécialité - Cahiers de l APLIUT, Vol. XXVII N° 1 (15 de febrero de 2008): 32–50. http://dx.doi.org/10.4000/apliut.1525.
Texto completoLopes Jaguaribe Pontes, Renata y Thierry Karsenti. "AS REPRESENTAÇÕES SOCIAIS DOS PROFESSORES FUTUROS DO QUÉBEC SOBRE O PAPEL DA APRENDIZAGEM MÓVEL COMO ALUNOS". Educação & Formação 4, n.º 11 mai/ago (1 de mayo de 2019): 24–40. http://dx.doi.org/10.25053/redufor.v4i11.1179.
Texto completoTielemans, Leyla. "Les représentations linguistiques comme outils du professeur et du didacticien : le cas des étudiants de langues de l’Université Libre de Bruxelles". Travaux de linguistique 86, n.º 1 (8 de noviembre de 2023): 33–58. http://dx.doi.org/10.3917/tl.086.0033.
Texto completoMarochian, Marika I. "Films et séries, des outils à valoriser dans le processus enseignement apprentissage en classe de FLE". Revista Lengua y Cultura 4, n.º 8 (5 de mayo de 2023): 72–80. http://dx.doi.org/10.29057/lc.v4i8.10527.
Texto completoTesis sobre el tema "Apprentissage de représentations vidéos"
Francis, Danny. "Représentations sémantiques d'images et de vidéos". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS605.
Texto completoRecent research in Deep Learning has sent the quality of results in multimedia tasks rocketing: thanks to new big datasets of annotated images and videos, Deep Neural Networks (DNN) have outperformed other models in most cases. In this thesis, we aim at developing DNN models for automatically deriving semantic representations of images and videos. In particular we focus on two main tasks : vision-text matching and image/video automatic captioning. Addressing the matching task can be done by comparing visual objects and texts in a visual space, a textual space or a multimodal space. Based on recent works on capsule networks, we define two novel models to address the vision-text matching problem: Recurrent Capsule Networks and Gated Recurrent Capsules. In image and video captioning, we have to tackle a challenging task where a visual object has to be analyzed, and translated into a textual description in natural language. For that purpose, we propose two novel curriculum learning methods. Moreover regarding video captioning, analyzing videos requires not only to parse still images, but also to draw correspondences through time. We propose a novel Learned Spatio-Temporal Adaptive Pooling method for video captioning that combines spatial and temporal analysis. Extensive experiments on standard datasets assess the interest of our models and methods with respect to existing works
Mazari, Ahmed. "Apprentissage profond pour la reconnaissance d’actions en vidéos". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS171.
Texto completoNowadays, video contents are ubiquitous through the popular use of internet and smartphones, as well as social media. Many daily life applications such as video surveillance and video captioning, as well as scene understanding require sophisticated technologies to process video data. It becomes of crucial importance to develop automatic means to analyze and to interpret the large amount of available video data. In this thesis, we are interested in video action recognition, i.e. the problem of assigning action categories to sequences of videos. This can be seen as a key ingredient to build the next generation of vision systems. It is tackled with AI frameworks, mainly with ML and Deep ConvNets. Current ConvNets are increasingly deeper, data-hungrier and this makes their success tributary of the abundance of labeled training data. ConvNets also rely on (max or average) pooling which reduces dimensionality of output layers (and hence attenuates their sensitivity to the availability of labeled data); however, this process may dilute the information of upstream convolutional layers and thereby affect the discrimination power of the trained video representations, especially when the learned action categories are fine-grained
Franceschi, Jean-Yves. "Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS014.
Texto completoThe recent rise of deep learning has been motivated by numerous scientific breakthroughs, particularly regarding representation learning and generative modeling. However, most of these achievements have been obtained on image or text data, whose evolution through time remains challenging for existing methods. Given their importance for autonomous systems to adapt in a constantly evolving environment, these challenges have been actively investigated in a growing body of work. In this thesis, we follow this line of work and study several aspects of temporality and dynamical systems in deep unsupervised representation learning and generative modeling. Firstly, we present a general-purpose deep unsupervised representation learning method for time series tackling scalability and adaptivity issues arising in practical applications. We then further study in a second part representation learning for sequences by focusing on structured and stochastic spatiotemporal data: videos and physical phenomena. We show in this context that performant temporal generative prediction models help to uncover meaningful and disentangled representations, and conversely. We highlight to this end the crucial role of differential equations in the modeling and embedding of these natural sequences within sequential generative models. Finally, we more broadly analyze in a third part a popular class of generative models, generative adversarial networks, under the scope of dynamical systems. We study the evolution of the involved neural networks with respect to their training time by describing it with a differential equation, allowing us to gain a novel understanding of this generative model
Saxena, Shreyas. "Apprentissage de représentations pour la reconnaissance visuelle". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM080/document.
Texto completoIn this dissertation, we propose methods and data driven machine learning solutions which address and benefit from the recent overwhelming growth of digital media content.First, we consider the problem of improving the efficiency of image retrieval. We propose a coordinated local metric learning (CLML) approach which learns local Mahalanobis metrics, and integrates them in a global representation where the l2 distance can be used. This allows for data visualization in a single view, and use of efficient ` 2 -based retrieval methods. Our approach can be interpreted as learning a linear projection on top of an explicit high-dimensional embedding of a kernel. This interpretation allows for the use of existing frameworks for Mahalanobis metric learning for learning local metrics in a coordinated manner. Our experiments show that CLML improves over previous global and local metric learning approaches for the task of face retrieval.Second, we present an approach to leverage the success of CNN models forvisible spectrum face recognition to improve heterogeneous face recognition, e.g., recognition of near-infrared images from visible spectrum training images. We explore different metric learning strategies over features from the intermediate layers of the networks, to reduce the discrepancies between the different modalities. In our experiments we found that the depth of the optimal features for a given modality, is positively correlated with the domain shift between the source domain (CNN training data) and the target domain. Experimental results show the that we can use CNNs trained on visible spectrum images to obtain results that improve over the state-of-the art for heterogeneous face recognition with near-infrared images and sketches.Third, we present convolutional neural fabrics for exploring the discrete andexponentially large CNN architecture space in an efficient and systematic manner. Instead of aiming to select a single optimal architecture, we propose a “fabric” that embeds an exponentially large number of architectures. The fabric consists of a 3D trellis that connects response maps at different layers, scales, and channels with a sparse homogeneous local connectivity pattern. The only hyperparameters of the fabric (the number of channels and layers) are not critical for performance. The acyclic nature of the fabric allows us to use backpropagation for learning. Learning can thus efficiently configure the fabric to implement each one of exponentially many architectures and, more generally, ensembles of all of them. While scaling linearly in terms of computation and memory requirements, the fabric leverages exponentially many chain-structured architectures in parallel by massively sharing weights between them. We present benchmark results competitive with the state of the art for image classification on MNIST and CIFAR10, and for semantic segmentation on the Part Labels dataset
Chan, wai tim Stefen. "Apprentissage supervisé d’une représentation multi-couches à base de dictionnaires pour la classification d’images et de vidéos". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT089/document.
Texto completoIn the recent years, numerous works have been published on dictionary learning and sparse coding. They were initially used in image reconstruction and image restoration tasks. Recently, researches were interested in the use of dictionaries for classification tasks because of their capability to represent underlying patterns in images. Good results have been obtained in specific conditions: centered objects of interest, homogeneous sizes and points of view.However, without these constraints, the performances are dropping.In this thesis, we are interested in finding good dictionaries for classification.The learning methods classically used for dictionaries rely on unsupervised learning. Here, we are going to study how to perform supervised dictionary learning.In order to push the performances further, we introduce a multilayer architecture for dictionaries. The proposed architecture is based on the local description of an input image and its transformation thanks to a succession of encoding and processing steps. It outputs a vector of features effective for classification.The learning method we developed is based on the backpropagation algorithm which allows a joint learning of the different dictionaries and an optimization solely with respect to the classification cost.The proposed architecture has been tested on MNIST, CIFAR-10 and STL-10 datasets with good results compared to other dicitonary-based methods. The proposed architecture can be extended to video analysis
Nguyen, Thanh Tuan. "Représentations efficaces des textures dynamiques". Electronic Thesis or Diss., Toulon, 2020. https://bu.univ-tln.fr/files/userfiles/file/intranet/travuniv/theses/sciences/2020/2020_Nguyen_ThanhTuan.pdf.
Texto completoRepresentation of dynamic textures (DTs), well-known as a sequence of moving textures, is a challenge in video analysis for various computer vision applications. It is partly due to disorientation of motions, the negative impacts of the well-known issues on capturing turbulent features: noise, changes of environment, illumination, similarity transformations, etc. In this work, we introduce significant solutions in order to deal with above problems. Accordingly, three streams of those are proposed for encoding DTs: i) based on dense trajectories extracted from a given video; ii) based on robust responses extracted by moment models; iii) based on filtered outcomes which are computed by variants of Gaussian-filtering kernels. In parallel, we also propose several discriminative descriptors to capture spatio-temporal features for above DT encodings. For DT representation based on dense trajectories, we firstly extract dense trajectories from a given video. Motion points along the paths of dense trajectories are then encoded by our xLVP operator, an important extension of Local Vector Patterns (LVP) in a completed encoding context, in order to capture directional dense-trajectory-based features for DT representation.For DT description based on moment models, motivated by the moment-image model, we propose a novel model of moment volumes based on statistical information of spherical supporting regions centered at a voxel. Two these models are then taken into account video analysis to point out moment-based images/volumes. In order to encode the moment-based images, we address CLSP operator, a variant of completed local binary patterns (CLBP). In the meanwhile, our xLDP, an important extension of Local Derivative Patterns (LDP) in a completed encoding context, is introduced to capture spatio-temporal features of the moment-volume-based outcomes. For DT representation based on the Gaussian-based filterings, we will investigate many kinds of filterings as pre-processing analysis of a video to point out its filtered outcomes. After that, these outputs are encoded by discriminative operators to structure DT descriptors correspondingly. More concretely, we exploit the Gaussian-based kernel and variants of high-order Gaussian gradients for the filtering analysis. Particularly, we introduce a novel filtering kernel (DoDG) in consideration of the difference of Gaussian gradients, which allows to point out robust DoDG-filtered components to construct prominent DoDG-based descriptors in small dimension. In parallel to the Gaussian-based filterings, some novel operators will be introduced to meet different contexts of the local DT encoding: CAIP, an adaptation of CLBP to fix the close-to-zero problem caused by separately bipolar features; LRP, based on a concept of a square cube of local neighbors sampled at a center voxel; CHILOP, a generalized formulation of CLBP to adequately investigate local relationships of hierarchical supporting regions. Experiments for DT recognition have validated that our proposals significantly perform in comparison with state of the art. Some of which have performance being very close to deep-learning approaches, expected as one of appreciated solutions for mobile applications due to their simplicity in computation and their DT descriptors in a small number of bins
Ullah, Muhammad Muneeb. "Représentations statistiques supervisées pour la reconnaissance d'actions humaines dans les vidéos". Rennes 1, 2012. https://tel.archives-ouvertes.fr/tel-01063349.
Texto completoDans cette thèse, nous nous occupons du problème de la reconnaissance d'actions humaines dans les données vidéo réalistes, telles que des films et des vidéos en ligne. La reconnaissance automatique et exacte des actions humaines dans une vidéo est une capacité fascinante. Les applications potentielles vont de la surveillance et de la robotique au diagnostic médical, à la recherche d'images par le contenu et les interfaces homme-ordinateur intelligents. Cette tâche constitue un grand défi à cause des variations importantes dans les apparences des personnes, les fonds dynamiques, les changements d'angle de prise de vue, les conditions de luminosité, les styles d'actions et d'autres facteurs encore. Les représentations de vidéo statistiques basées sur les caractéristiques spatio-temporelles locales se sont dernièrement montrées très efficaces pour la reconnaissance dans les scénarios réalistes. Leur succès peut être attribué à des hypothèses favorables, relatives aux données et à la solidité par rapport à plusieurs variations dans la vidéo. De telles représentations, encodent néanmoins souvent des vidéos par un ensemble désordonné de primitifs de bas niveau. La thèse élargit les méthodes actuelles en développant des caractéristiques plus distinctives et en intégrant un contrôle additionnel dans les sacs de caractéristiques basés sur les représentations vidéo, visant à améliorer la reconnaissance d'actions dans des données vidéos sans contrainte et particulièrement difficiles
Roman, Mathilde. "Représentations et mises en scène de soi dans les vidéos d'artistes". Paris 1, 2005. http://www.theses.fr/2005PA010694.
Texto completoSafadi, Bahjat. "Indexation sémantique des images et des vidéos par apprentissage actif". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00766904.
Texto completoLuc, Pauline. "Apprentissage autosupervisé de modèles prédictifs de segmentation à partir de vidéos". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM024/document.
Texto completoPredictive models of the environment hold promise for allowing the transfer of recent reinforcement learning successes to many real-world contexts, by decreasing the number of interactions needed with the real world.Video prediction has been studied in recent years as a particular case of such predictive models, with broad applications in robotics and navigation systems.While RGB frames are easy to acquire and hold a lot of information, they are extremely challenging to predict, and cannot be directly interpreted by downstream applications.Here we introduce the novel tasks of predicting semantic and instance segmentation of future frames.The abstract feature spaces we consider are better suited for recursive prediction and allow us to develop models which convincingly predict segmentations up to half a second into the future.Predictions are more easily interpretable by downstream algorithms and remain rich, spatially detailed and easy to obtain, relying on state-of-the-art segmentation methods.We first focus on the task of semantic segmentation, for which we propose a discriminative approach based on adversarial training.Then, we introduce the novel task of predicting future semantic segmentation, and develop an autoregressive convolutional neural network to address it.Finally, we extend our method to the more challenging problem of predicting future instance segmentation, which additionally segments out individual objects.To deal with a varying number of output labels per image, we develop a predictive model in the space of high-level convolutional image features of the Mask R-CNN instance segmentation model.We are able to produce visually pleasing segmentations at a high resolution for complex scenes involving a large number of instances, and with convincing accuracy up to half a second ahead
Libros sobre el tema "Apprentissage de représentations vidéos"
Sylvie, Caruso Cahn, ed. La boîte à outils de l'intelligence collective: Avec 4 vidéos d'approfondissement. Paris: Dunod, 2016.
Buscar texto completoLes représentations des langues et de leur apprentissage: Références, modèles, données et méthodes. Paris: Didier, 2001.
Buscar texto completode Diesbach-Dolder, Stéphanie. Apprentissage scolaire : lorsque les émotions s’invitent en classe… Une analyse socioculturelle des pratiques d’enseignement en éducation interculturelle. Éditions Alphil-Presses universitaires suisses, 2022. http://dx.doi.org/10.33055/alphil.03189.
Texto completoHodieb, Liliane, ed. Plurilinguisme et tensions identitaires. Editions des archives contemporaines, 2021. http://dx.doi.org/10.17184/eac.9782813003614.
Texto completoCapítulos de libros sobre el tema "Apprentissage de représentations vidéos"
Guemkam Ouafo, Diane Armelle. "Multilinguisme camerounais, traitement computationnel et développement". En Multilinguisme, multiculturalisme et représentations identitaires, 303–12. Observatoire européen du plurilinguisme, 2021. http://dx.doi.org/10.3917/oep.goron.2021.01.0303.
Texto completoRAMANDIMBISOA, Farah-Sandy. "Langues et représentations linguistiques des étudiants issus de milieux défavorisés. Le cas du programme SÉSAME à Madagascar". En Langue(s) en mondialisation, 77–84. Editions des archives contemporaines, 2022. http://dx.doi.org/10.17184/eac.5291.
Texto completoAtangana, Marie Renée. "Apport du numérique dans la dynamisation et l’opérationnalisation des langues nationales au Cameroun". En Multilinguisme, multiculturalisme et représentations identitaires, 313–31. Observatoire européen du plurilinguisme, 2021. http://dx.doi.org/10.3917/oep.goron.2021.01.0313.
Texto completoGuehi, José-Gisèle, Marie Christelle Kouame y Anani Michael Kouabenan. "Et si le français ivoirien devient medium d’enseignement-apprentissage au primaire ? Représentations des enseignants et parents d’élèves". En Les parlers urbains africains au prisme du plurilinguisme : description sociolinguistique, 215–30. Observatoire européen du plurilinguisme, 2020. http://dx.doi.org/10.3917/oep.kosso.2020.01.0215.
Texto completoChevalier, Laurence. "Les facteurs à l’oeuvre dans le maintien de l’enseignement traditionnel de la grammaire au Japon". En Le Japon, acteur de la Francophonie, 27–40. Editions des archives contemporaines, 2016. http://dx.doi.org/10.17184/eac.5524.
Texto completoKhadraoui, Errime y Riad Messaour. "Apprentissage du FLE en Algérie : de l’analyse des représentations à la motivation des apprenants dans le milieu universitaire". En Para lá da tarefa: implicar os estudantes na aprendizagem de línguas estrangeiras no ensino superior, 208–25. Faculdade de Letras da Universidade do Porto, 2019. http://dx.doi.org/10.21747/9789898969217/paraa11.
Texto completoHouda, Melaouhia Ben Hamad. "Pratiques et représentations du français chez les étudiants tunisiens en classe de langue". En Écoles, langues et cultures d’enseignement en contexte plurilingue africain, 267–81. Observatoire européen du plurilinguisme, 2018. http://dx.doi.org/10.3917/oep.agbef.2018.01.0267.
Texto completoBOURNEL-BOSSON, Chae-Yeon y Isabelle CROS. "Former les futurs enseignants de langue au numérique par l’approche réflexive (collaborative)". En Numérique et didactique des langues et cultures, 131–54. Editions des archives contemporaines, 2022. http://dx.doi.org/10.17184/eac.5758.
Texto completoLarose, François, Mathieu Bégin y Marie-Christine Beaudry. "Les représentations d’élèves du secondaire quant à l’usage de l’outil de microblogage twitter pour développer leur compétence à écrire dans le cadre d’une situation d’apprentissage et d’évaluation". En Création de dispositifs didactiques et enseignement-apprentissage diversifié en littératie : vers une valorisation de la recherche-développement et de la recherche-action en éducation, 93–111. Éditions de l’Université de Sherbrooke, 2017. http://dx.doi.org/10.17118/11143/10126.
Texto completoActas de conferencias sobre el tema "Apprentissage de représentations vidéos"
Ghedhahem, Zeineb. "Cap sur le premier MOOC FOFLE en Afrique francophone pour se (re)mettre à flot". En XXV Coloquio AFUE. Palabras e imaginarios del agua. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/xxvcoloquioafue.2016.3049.
Texto completo