Literatura académica sobre el tema "Apprentissage de représentation des états"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Apprentissage de représentation des états".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Apprentissage de représentation des états"
Benchenane, Karim. "Les modèles animaux du traumatisme et du trouble de stress post-traumatique". Biologie Aujourd’hui 217, n.º 1-2 (2023): 89–101. http://dx.doi.org/10.1051/jbio/2023022.
Texto completoRenier, Janine. "Crises systémiques : Effondrement ? Ou méta-morphose vers la grande transition ?" Acta Europeana Systemica 8 (10 de julio de 2020): 285–300. http://dx.doi.org/10.14428/aes.v8i1.56463.
Texto completoAchouri, Lelia. ""Les représentations des étudiants algériens vis-à-vis la langue française"". Scientific Bulletin of the Politehnica University of Timişoara Transactions on Modern Languages 19 (4 de mayo de 2023): 115–25. http://dx.doi.org/10.59168/wkls1359.
Texto completoMassion, Jean. "Posture, représentation interne et apprentissage". STAPS 19, n.º 46 (1998): 209–15. http://dx.doi.org/10.3406/staps.1998.1290.
Texto completoDeysine, Anne. "Démocratie et représentation aux États-Unis". Outre-Terre N° 38, n.º 1 (2014): 90. http://dx.doi.org/10.3917/oute1.038.0090.
Texto completoVeyrat, J. G. "Représentation cinématographique des états d’excitation maniaque". Annales Médico-psychologiques, revue psychiatrique 166, n.º 5 (junio de 2008): 391–93. http://dx.doi.org/10.1016/j.amp.2008.03.016.
Texto completoCascioli, Fiammetta y Cécile Dejoux. "L’apprentissage du management en entreprise avec un MOOC : l’importance du profil managérial dans la définition des attentes". Question(s) de management 46, n.º 5 (11 de septiembre de 2023): 111–21. http://dx.doi.org/10.3917/qdm.226.0111.
Texto completoSexton, Jean. "Face à l'avenir après cinquante ans: éditorial". Relations industrielles 50, n.º 1 (12 de abril de 2005): 3–8. http://dx.doi.org/10.7202/050989ar.
Texto completoBanymandhub, Aarti. "Le changement, un nouvel apprentissage". Le Journal des psychologues N° Hors-série, HS2 (18 de septiembre de 2023): 43–47. http://dx.doi.org/10.3917/jdp.hs2.0043.
Texto completoAncori, Bernard. "Complexité et créativité : émergence, stabilité et dynamiques des collectifs". Nouvelles perspectives en sciences sociales 12, n.º 2 (22 de agosto de 2017): 11–39. http://dx.doi.org/10.7202/1040903ar.
Texto completoTesis sobre el tema "Apprentissage de représentation des états"
Castanet, Nicolas. "Automatic state representation and goal selection in unsupervised reinforcement learning". Electronic Thesis or Diss., Sorbonne université, 2025. http://www.theses.fr/2025SORUS005.
Texto completoIn the past few years, Reinforcement Learning (RL) achieved tremendous success by training specialized agents owning the ability to drastically exceed human performance in complex games like Chess or Go, or in robotics applications. These agents often lack versatility, requiring human engineering to design their behavior for specific tasks with predefined reward signal, limiting their ability to handle new circumstances. This agent's specialization results in poor generalization capabilities, which make them vulnerable to small variations of external factors and adversarial attacks. A long term objective in artificial intelligence research is to move beyond today's specialized RL agents toward more generalist systems endowed with the capability to adapt in real time to unpredictable external factors and to new downstream tasks. This work aims in this direction, tackling unsupervised reinforcement learning problems, a framework where agents are not provided with external rewards, and thus must autonomously learn new tasks throughout their lifespan, guided by intrinsic motivations. The concept of intrinsic motivation arise from our understanding of humans ability to exhibit certain self-sufficient behaviors during their development, such as playing or having curiosity. This ability allows individuals to design and solve their own tasks, and to build inner physical and social representations of their environments, acquiring an open-ended set of skills throughout their lifespan as a result. This thesis is part of the research effort to incorporate these essential features in artificial agents, leveraging goal-conditioned reinforcement learning to design agents able to discover and master every feasible goals in complex environments. In our first contribution, we investigate autonomous intrinsic goal setting, as a versatile agent should be able to determine its own goals and the order in which to learn these goals to enhance its performances. By leveraging a learned model of the agent's current goal reaching abilities, we show that we can shape an optimal difficulty goal distribution, enabling to sample goals in the Zone of Proximal Development (ZPD) of the agent, which is a psychological concept referring to the frontier between what a learner knows and what it does not, constituting the space of knowledge that is not mastered yet but have the potential to be acquired. We demonstrate that targeting the ZPD of the agent's result in a significant increase in performance for a great variety of goal-reaching tasks. Another core competence is to extract a relevant representation of what matters in the environment from observations coming from any available sensors. We address this question in our second contribution, by highlighting the difficulty to learn a correct representation of the environment in an online setting, where the agent acquires knowledge incrementally as it make progresses. In this context, recent achieved goals are outliers, as there are very few occurrences of this new skill in the agent's experiences, making their representations brittle. We leverage the adversarial setting of Distributionally Robust Optimization in order for the agent's representations of such outliers to be reliable. We show that our method leads to a virtuous circle, as learning accurate representations for new goals fosters the exploration of the environment
Bigot, Damien. "Représentation et apprentissage de préférences". Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30031/document.
Texto completo--
Tomasini, Linda. "Apprentissage d'une représentation statistique et topologique d'un environnement". Toulouse, ENSAE, 1993. http://www.theses.fr/1993ESAE0024.
Texto completoChabiron, Olivier. "Apprentissage d'arbres de convolutions pour la représentation parcimonieuse". Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30213/document.
Texto completoThe dictionary learning problem has received increasing attention for the last ten years. DL is an adaptive approach for sparse data representation. Many state-of-the-art DL methods provide good performances for problems such as approximation, denoising and inverse problems. However, their numerical complexity restricts their use to small image patches. Thus, dictionary learning does not capture large features and is not a viable option for many applications handling large images, such as those encountered in remote sensing. In this thesis, we propose and study a new model for dictionary learning, combining convolutional sparse coding and dictionaries defined by convolutional tree structures. The aim of this model is to provide efficient algorithms for large images, avoiding the decomposition of these images into patches. In the first part, we study the optimization of a composition of convolutions with sparse kernels, to reach a target atom (such as a cosine, wavelet or curvelet). This is a non-convex matrix factorization problem. We propose a resolution method based on a Gaus-Seidel scheme, which produces good approximations of target atoms and whose complexity is linear with respect to the image size. Moreover, numerical experiments show that it is possible to find a global minimum. In the second part, we introduce a dictionary structure based on convolutional trees. We propose a dictionary update algorithm adapted to this structure and which complexity remains linear with respect to the image size. Finally, a sparse coding step is added to the algorithm in the last part. For each evolution of the proposed method, we illustrate its approximation abilities with numerical experiments
Mandil, Guillaume. "Modèle de représentation géométrique intégrant les états physiques du produit". Phd thesis, Ecole Centrale Paris, 2011. http://tel.archives-ouvertes.fr/tel-00714559.
Texto completoPhilogène, Gina. "De "Black" à "African american" : l'élaboration d'une nouvelle représentation sociale". Paris, EHESS, 1997. http://www.theses.fr/1996EHES0019.
Texto completoHautot, Julien. "Représentation à base radiale pour l'apprentissage par renforcement visuel". Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0093.
Texto completoThis thesis work falls within the context of Reinforcement Learning (RL) from image data. Unlike supervised learning, which enables performing various tasks such as classification, regression, or segmentation from an annotated database, RL allows learning without a database through interactions with an environment. In these methods, an agent, such as a robot, performs different actions to explore its environment and gather training data. Training such an agent involves trial and error; the agent is penalized when it fails at its task and rewarded when it succeeds. The goal for the agent is to improve its behavior to obtain the most long-term rewards.We focus on visual extractions in RL scenarios using first-person view images. The use of visual data often involves deep convolutional networks that work directly on images. However, these networks have significant computational complexity, lack interpretability, and sometimes suffer from instability. To overcome these difficulties, we investigated the development of a network based on radial basis functions, which enable sparse and localized activations in the input space. Radial basis function networks (RBFNs) peaked in the 1990s but were later supplanted by convolutional networks due to their high computational cost on images. In this thesis, we developed a visual feature extractor inspired by RBFNs, simplifying the computational cost on images. We used our network for solving first-person visual tasks and compared its results with various state-of-the-art methods, including end-to-end learning methods, state representation learning methods, and extreme machine learning methods. Different scenarios were tested from the VizDoom simulator and the Pybullet robotics physics simulator. In addition to comparing the rewards obtained after learning, we conducted various tests on noise robustness, parameter generation of our network, and task transfer to reality.The proposed network achieves the best performance in reinforcement learning on the tested scenarios while being easier to use and interpret. Additionally, our network is robust to various noise types, paving the way for the effective transfer of knowledge acquired in simulation to reality
Poussevin, Mickael. "Apprentissage de représentation pour des données générées par des utilisateurs". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066040/document.
Texto completoIn this thesis, we study how representation learning methods can be applied to user-generated data. Our contributions cover three different applications but share a common denominator: the extraction of relevant user representations. Our first application is the item recommendation task, where recommender systems build user and item profiles out of past ratings reflecting user preferences and item characteristics. Nowadays, textual information is often together with ratings available and we propose to use it to enrich the profiles extracted from the ratings. Our hope is to extract from the textual content shared opinions and preferences. The models we propose provide another opportunity: predicting the text a user would write on an item. Our second application is sentiment analysis and, in particular, polarity classification. Our idea is that recommender systems can be used for such a task. Recommender systems and traditional polarity classifiers operate on different time scales. We propose two hybridizations of these models: the former has better classification performance, the latter highlights a vocabulary of surprise in the texts of the reviews. The third and final application we consider is urban mobility. It takes place beyond the frontiers of the Internet, in the physical world. Using authentication logs of the subway users, logging the time and station at which users take the subway, we show that it is possible to extract robust temporal profiles
Poussevin, Mickael. "Apprentissage de représentation pour des données générées par des utilisateurs". Electronic Thesis or Diss., Paris 6, 2015. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2015PA066040.pdf.
Texto completoIn this thesis, we study how representation learning methods can be applied to user-generated data. Our contributions cover three different applications but share a common denominator: the extraction of relevant user representations. Our first application is the item recommendation task, where recommender systems build user and item profiles out of past ratings reflecting user preferences and item characteristics. Nowadays, textual information is often together with ratings available and we propose to use it to enrich the profiles extracted from the ratings. Our hope is to extract from the textual content shared opinions and preferences. The models we propose provide another opportunity: predicting the text a user would write on an item. Our second application is sentiment analysis and, in particular, polarity classification. Our idea is that recommender systems can be used for such a task. Recommender systems and traditional polarity classifiers operate on different time scales. We propose two hybridizations of these models: the former has better classification performance, the latter highlights a vocabulary of surprise in the texts of the reviews. The third and final application we consider is urban mobility. It takes place beyond the frontiers of the Internet, in the physical world. Using authentication logs of the subway users, logging the time and station at which users take the subway, we show that it is possible to extract robust temporal profiles
Ben-Fares, Maha. "Apprentissage de représentation non supervisé de flux de données textuelles". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1316.
Texto completoThis thesis presents an innovative methods for clustering text data streams and also introduces a system for identifying AI-generated text. This AI detection method can be used independently or as a preprocessing step to filter incoming documents, by removing AI-generated content, preserving the authenticity and validity of the information.Specifically, we develop a classification system that distinguishes between human-written and AI-generated text. This method employs a hierarchical fusion strategy that integrates representations from various layers of the BERT model. By focusing on syntactic features, our model classifies each token as either Human or AI, effectively capturing detailed text structures and ensuring robust performance across multiple languages using the XLM-RoBERTa-Large model.In the field of data stream clustering, particularly for textual data, we first introduce a method called OTTC (Online Topological Text Clustering). This approach leverages topological representation learning in combination with online clustering techniques. It effectively addresses the challenges in clustering textual data streams, such as data dynamism, sparsity, and the curse of dimensionality, which are issues that traditional clustering methods often struggle to manage.To further improve clustering results and address the limitations of OTTC, we propose the MVTStream algorithm, specifically designed for multi-view text data streams. This algorithm operates in three stages: First, it generates diverse text representations of incoming data, treating each representation as a separate view. Then, it employs micro-cluster data structures for real-time processing. Finally, it utilizes ensemble methods to aggregate clusters from the various views and get the final clusters
Libros sobre el tema "Apprentissage de représentation des états"
J, Cohn H. y International Commission for the History of Representative and Parliamentary Institutions. Congress., eds. Parliaments, estates and representation =: Parlements, états et représentation. Aldershot: Ashgate Variorum, 2004.
Buscar texto completoJ, Cohn H. y International Commission for the History of Representative and Parliamentary Institutions., eds. Parliaments, estates and representation =: Parlements, états et représentation. Vol. 23. Aldershot: Ashgate Variorum, 2003.
Buscar texto completoChayer, Lucille Paquette. Compréhension de lecture. Montréal, Qué: Éditions de la Chenelière, 2000.
Buscar texto completoBasse-Normandie, Université de Caen, ed. Monoparentalité et risque de pauvreté aux États-Unis: Une représentation sociale de la pauvreté. Lille: A.N.R.T. Université de Lille III, 1998.
Buscar texto completoCôté, Claire. Résolution de problèmes. Montréal, Qué: Éditions de la Chenelière, 2000.
Buscar texto completoF, Russ-Eft Darlene, Preskill Hallie S y Sleezer Catherine, eds. Human resource development review: Research and implications. Thousand Oaks, Calif: Sage Publications, 1997.
Buscar texto completoR, Cocking Rodney y Renninger K. Ann, eds. The development and meaning ofpsychological distance. Hillsdale, N.J: L. Erlbaum Associates, 1993.
Buscar texto completoR, Cocking Rodney y Renninger K. Ann, eds. The development and meaning of psychological distance. Hillsdale, N.J: L. Erlbaum, 1993.
Buscar texto completoJay, McTighe, ed. Understanding by Design. 2a ed. Alexandria, VA: Association for Supervision and Curriculum Development, 2005.
Buscar texto completoJay, McTighe, ed. Understanding by design. Alexandria, Va: Association for Supervision and Curriculum Development, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Apprentissage de représentation des états"
Bastien, Claude. "Apprentissage : modèles et représentation". En Intelligence naturelle, intelligence artificielle, 257–68. Presses Universitaires de France, 1993. http://dx.doi.org/10.3917/puf.lenyj.1993.01.0257.
Texto completo"REPRÉSENTATION AUX ÉTATS DE L’EMPIRE". En Œuvres complètes de Voltaire (Complete Works of Voltaire) 29B, 455–78. Liverpool University Press, 2020. http://dx.doi.org/10.2307/jj.10704317.41.
Texto completoWANG, Xinxia, Xialing SHEN y Jing GUO. "La métaphore dans les dictionnaires bilingues d’apprentissage :". En Dictionnaires et apprentissage des langues, 79–88. Editions des archives contemporaines, 2021. http://dx.doi.org/10.17184/eac.4627.
Texto completo"Les Organes non Étatiques entre Indépendance et Rémanence des États". En La représentation institutionnelle dans l'ordre international, 169–70. Brill | Nijhoff, 2002. http://dx.doi.org/10.1163/9789004479999_009.
Texto completoMartí, Eduardo. "Appropriation précoce des systèmes externes de représentation : apprentissage et développement". En Vygotski et les recherches en éducation et en didactiques, 59–71. Presses Universitaires de Bordeaux, 2008. http://dx.doi.org/10.4000/books.pub.48192.
Texto completo"Les Conséquences de l’Autonomie de L’organisation: La Démultiplication des Engagements des États Membres". En La représentation institutionnelle dans l'ordre international, 491–517. Brill | Nijhoff, 2002. http://dx.doi.org/10.1163/9789004479999_023.
Texto completoVAUTIER, V., J. F. RINGEVAL, A. DELAHAYE, C. GORIN y A. MONTCRIOL. "Apprentissage du débriefing médico-psychologique et simulation". En Médecine et Armées Vol. 44 No.3, 243–45. Editions des archives contemporaines, 2016. http://dx.doi.org/10.17184/eac.6813.
Texto completoFrançois, Pierre y Théo Voldoire. "Que sait‐on du travail ?" En Que sait‐on du travail ?, 192–207. Presses de Sciences Po, 2023. http://dx.doi.org/10.3917/scpo.colle.2023.01.0192.
Texto completoATTO, Abdourrahmane M., Héla HADHRI, Flavien VERNIER y Emmanuel TROUVÉ. "Apprentissage multiclasse multi-étiquette de changements d’état à partir de séries chronologiques d’images". En Détection de changements et analyse des séries temporelles d’images 2, 247–71. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch6.
Texto completoGrenot, Michèle. "Chapitre II. La représentation des plus pauvres aux États généraux en débat". En Le souci des plus pauvres, 55–80. Presses universitaires de Rennes, 2014. http://dx.doi.org/10.4000/books.pur.50483.
Texto completoActas de conferencias sobre el tema "Apprentissage de représentation des états"
Da Lisca, Caterina. "Les paysages aquatiques des symbolistes belges ou les « paysages de l’âme »". En XXV Coloquio AFUE. Palabras e imaginarios del agua. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/xxvcoloquioafue.2016.3055.
Texto completo