Literatura académica sobre el tema "Apprentissage de données et de connaissance humaine"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Apprentissage de données et de connaissance humaine".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Apprentissage de données et de connaissance humaine"
Valsecchi, Alessandro. "« Nemo intrat in celum nisi per philosophiam ». Jean Scot Érigène sur la nature et la connaissance humaine". Les Études philosophiques N° 149, n.º 2 (24 de mayo de 2024): 3–25. http://dx.doi.org/10.3917/leph.242.0003.
Texto completoRENAUD, Jean. "Un an au Québec. La compétence linguistique et l’accès à un premier emploi". Sociologie et sociétés 24, n.º 2 (30 de septiembre de 2002): 131–42. http://dx.doi.org/10.7202/001623ar.
Texto completoBESNIER, Jean-Baptiste, Frédéric CHERQUI, Gilles CHUZEVILLE y Aurélie LAPLANCHE. "Amélioration de la connaissance patrimoniale des réseaux d’assainissement de la métropole de Lyon". TSM 12 2023, TSM 12 2023 (20 de diciembre de 2023): 169–77. http://dx.doi.org/10.36904/tsm/202312169.
Texto completoSavadogo, Madi, Philippe Koné, Laibané Dieudonné Dahourou, Rosine Manishimwe, Adama Sow, Lalé Nébié, Nicolas Antoine-Moussiaux, Bernard Doulkom y Rianatou Bada-Alambedji. "Epidémiologie de la rage et connaissance, attitudes et pratiques des communautés au Burkina Faso". Revue d’élevage et de médecine vétérinaire des pays tropicaux 73, n.º 2 (29 de junio de 2020): 133–40. http://dx.doi.org/10.19182/remvt.31863.
Texto completoHARINAIVO, A., H. HAUDUC y I. TAKACS. "Anticiper l’impact de la météo sur l’influent des stations d’épuration grâce à l’intelligence artificielle". Techniques Sciences Méthodes 3 (20 de marzo de 2023): 33–42. http://dx.doi.org/10.36904/202303033.
Texto completoCaccamo, Emmanuelle y Fabien Richert. "Les procédés algorithmiques au prisme des approches sémiotiques". Cygne noir, n.º 7 (1 de junio de 2022): 1–16. http://dx.doi.org/10.7202/1089327ar.
Texto completoDiedhiou, Yancouba Cheikh. "Pédagogie et formation dans les spécialités : talon d’Achille des Enseignants de l’ENDSS et de l’ENTSS face aux exigences de l’APC et du système LMD". Liens, revue internationale des sciences et technologies de l'éducation 1, n.º 5 (5 de diciembre de 2023): 151–68. http://dx.doi.org/10.61585/pud-liens-v1n501.
Texto completoHosni, Hykel y Angelo Vulpiani. "Random Thoughts about Complexity, Data and Models". Intellectica. Revue de l'Association pour la Recherche Cognitive 72, n.º 1 (2020): 111–22. http://dx.doi.org/10.3406/intel.2020.1948.
Texto completoHUET, L., Y. BARNIER y H. DONNADIEU-RIGOLE. "Chemsex : risques ressentis et stratégies d'adaptation". EXERCER 35, n.º 201 (1 de marzo de 2024): 119–25. http://dx.doi.org/10.56746/exercer.2024.201.119.
Texto completoHoz Morales, Héctor Alberto. "Mayer-Schönberger, V. y Cukier, K. (2013). Big Data. La revolución de los datos masivos". Clivajes. Revista de Ciencias Sociales, n.º 9 (24 de abril de 2018): 189–94. http://dx.doi.org/10.25009/clivajes-rcs.v0i9.2536.
Texto completoTesis sobre el tema "Apprentissage de données et de connaissance humaine"
Changuel, Sahar. "Métadonnées pour la personnalisation et l'accès à la connaissance". Paris 6, 2011. http://www.theses.fr/2011PA066073.
Texto completoBroisin, Julien. "Un Environnement Informatique pour l'Apprentissage Humain au Service de la Virtualisation et de la Gestion des Objets Pédagogiques". Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00367682.
Texto completoNos travaux exposent les capacités d'un Environnement Informatique pour l'Apprentissage Humain (EIAH) à fournir deux services complémentaires qui conduisent à la virtualisation des ressources pédagogiques : une vue unique d'un ensemble de ressources pédagogiques renfermées dans des viviers de connaissance distincts, et un accès facilité à celles-ci à travers les plates-formes d'apprentissage. Nous présentons une architecture ouverte basée sur des standards de l'e-formation établis ou en cours d'élaboration, et qui assure l'intégration des services énoncés ci-dessus au sein d'un EIAH. Nous présentons deux expérimentations déployées au sein de contextes différents qui valident notre approche et qui favorisent ainsi le partage et la réutilisation des objets pédagogiques.
La seconde partie de nos travaux porte sur la supervision des ressources, systèmes informatiques et utilisateurs impliqués dans le processus de virtualisation afin de faciliter aux éducateurs la recherche de matériel pédagogique pertinent pour leur contexte parmi le nombre considérable de ressources offertes par la fédération des viviers de connaissance. Nous présentons un modèle d'information décrivant les entités précitées et qui constitue une extension de CIM (Common Information Model) pour l'EIAH, ainsi qu'une infrastructure de supervision composée d'agents de gestion, d'un fournisseur de données, d'un gestionnaire centralisé et d'une application graphique de gestion. Nous appliquons ensuite cette infrastructure au sein de notre EIAH et de l'outil de recherche et d'indexation d'objets pédagogiques de la fondation ARIADNE. Enfin, nous exposons comment les informations statistiques recueillies peuvent être exploitées pour présenter aux concepteurs de cursus pédagogiques des ressources de qualité.
Chen, Xiao. "Contrôle et optimisation de la perception humaine sur les vêtements virtuels par évaluation sensorielle et apprentissage de données expérimentales". Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10019/document.
Texto completoUnder the exacerbated worldwide competition, the mass customization or personalization of products is now becoming an important strategy for companies to enhance the perceived value of their products. However, the current online customization experiences are not fully satisfying for consumers because the choices are mostly limited to colors and motifs. The sensory fields of products, particularly the material’s appearance and hand as well as the garment fit are barely concerned.In my PhD research project, we have proposed a new collaborative design platform. It permits merchants, designers and consumers to have a new experience during the development of highly valued personalized garments without extra industrial costs. The construction of this platform consists of several parts. At first, we have selected, through a sensory experiment, an appropriate 3D garment CAD software in terms of rending quality. Then we have proposed an active leaning-based experimental design in order to find the most appropriate values of the fabric technical parameters permitting to minimize the overall perceptual difference between real and virtual fabrics in static and dynamic scenarios. Afterwards, we have quantitatively characterized the human perception on virtual garment by using a number of normalized sensory descriptors. These descriptors involve not only the appearance and the hand of the fabric but also the garment fit. The corresponding sensory data have been collected through two sensory experiments respectively. By learning from the experimental data, two models have been established. The first model permits to characterize the relationship between the appearance and hand perception of virtual fabrics and corresponding technical parameters that constitute the inputs of the 3D garment CAD software. The second model concerns the relationship between virtual garment fit perception and the pattern design parameters. These two models constitute the main components of the collaborative design platform. Using this platform, we have realized a number of garments meeting consumer’s personalized perceptual requirements
Nkengue, Marc Junior. "Développement d'un vêtement intelligent pour le suivi et diagnostic en temps-réel de patients atteints de COVID-19 long". Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0013.
Texto completoBased on the results (prototypes, sensors, algorithms) obtained in our previous projects (IOTFetMov (ANR), TexWeld (H2020)), this PhD thesis aims at designing a new intelligent garment, in order to detect and monitor in real time, the symptoms of long COVID-19 patient. We establish a pre-diagnosis by processing relevant signals using intelligent techniques. This intelligent garment, a close-fitting belt, integrates both a set of sensors, measuring physiological indices (skin temperatures, electrocardiogram) and embed a local decision support system allowing to estimate relevant parameters used for an automatic estimation of the connected patient health status, by learning from the measured signals and from the medical expert knowledge. A remote diagnosis can be carried out through interactions with the doctor via the e-textile and the patient's smartphone. In this way, a rapid worsening of symptoms will be detected early, and doctors will be able to react more quickly to manage patients
Cherfi, Hacène. "Etude et réalisation d'un système d'extraction de connaissances à partir de textes". Phd thesis, Université Henri Poincaré - Nancy I, 2004. http://tel.archives-ouvertes.fr/tel-00011195.
Texto completoL'utilisation d'un modèle de connaissances vient appuyer et surtout compléter cette première approche. Il est montré, par la définition d'une mesure de vraisemblance, l'intérêt de découvrir de nouvelles connaissances en écartant les connaissances déjà répertoriées et décrites par un modèle de connaissances du domaine. Les règles d'association peuvent donc être utilisées pour alimenter un modèle de connaissances terminologiques du domaine des textes choisi. La thèse inclut la réalisation d'un système appelé TAMIS : "Text Analysis by Mining Interesting ruleS" ainsi qu'une expérimentation et une validation sur des données réelles de résumés de textes en biologie moléculaire.
Cadot, Martine. "Extraire et valider les relations complexes en sciences humaines : statistiques, motifs et règles d'association". Phd thesis, Université de Franche-Comté, 2006. http://tel.archives-ouvertes.fr/tel-00594174.
Texto completoBlanc, Beyne Thibault. "Estimation de posture 3D à partir de données imprécises et incomplètes : application à l'analyse d'activité d'opérateurs humains dans un centre de tri". Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0106.
Texto completoIn a context of study of stress and ergonomics at work for the prevention of musculoskeletal disorders, the company Ebhys wants to develop a tool for analyzing the activity of human operators in a waste sorting center, by measuring ergonomic indicators. To cope with the uncontrolled environment of the sorting center, these indicators are measured from depth images. An ergonomic study allows us to define the indicators to be measured. These indicators are zones of movement of the operator’s hands and zones of angulations of certain joints of the upper body. They are therefore indicators that can be obtained from an analysis of the operator’s 3D pose. The software for calculating the indicators will thus be composed of three steps : a first part segments the operator from the rest of the scene to ease the 3D pose estimation, a second part estimates the operator’s 3D pose, and the third part uses the operator’s 3D pose to compute the ergonomic indicators. First of all, we propose an algorithm that extracts the operator from the rest of the depth image. To do this, we use a first automatic segmentation based on static background removal and selection of a moving element given its position and size. This first segmentation allows us to train a neural network that improves the results. This neural network is trained using the segmentations obtained from the first automatic segmentation, from which the best quality samples are automatically selected during training. Next, we build a neural network model to estimate the operator’s 3D pose. We propose a study that allows us to find a light and optimal model for 3D pose estimation on synthetic depth images, which we generate numerically. However, if this network gives outstanding performances on synthetic depth images, it is not directly applicable to real depth images that we acquired in an industrial context. To overcome this issue, we finally build a module that allows us to transform the synthetic depth images into more realistic depth images. This image-to-image translation model modifies the style of the depth image without changing its content, keeping the 3D pose of the operator from the synthetic source image unchanged on the translated realistic depth frames. These more realistic depth images are then used to re-train the 3D pose estimation neural network, to finally obtain a convincing 3D pose estimation on the depth images acquired in real conditions, to compute de ergonomic indicators
Hosni, Nadia. "De l’analyse en composantes principales fonctionnelle à l’autoencodeur convolutif profond sur les trajectoires de formes de Kendall pour l’analyse et la reconnaissance de la démarche en 3D". Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1I066.
Texto completoIn the field of Computer Vision and Pattern Recognition, human behavior understanding has attracted the attention of several research groups and specialized companies. Successful intelligent solutions will be playing an important role in applications which involve humanrobot or human-computer interaction, biometrics recognition (security), and physical performance assessment (healthcare and well-being) since it will help the human beings were their cognitive and limited capabilities cannot perform well. In my thesis project, we investigate the problem of 3D gait recognition and analysis as gait is user-friendly and a well-accepted technology especially with the availability of RGB-D sensors and algorithms for detecting and tracking of human landmarks in video streams. Unlike other biometrics such as fingerprints, face or iris, it can be acquired at a large distance and do not require any collaboration of the end user. This point makes gait recognition suitable in intelligent video surveillance problems used, for example, in the security field as one of the behavioral biometrics or in healthcare as good physical patterns. However, using 3D human body tracked landmarks to provide such motions’ analysis faces many challenges like spatial and temporal variations and high dimension. Hence, in this thesis, we propose novel frameworks to infer 3D skeletal sequences for the purpose of 3D gait analysis and recognition. They are based on viewing the above-cited sequences as time-parameterized trajectories on the Kendall shape space S, results of modding out shape-preserving transformations, i.e., scaling, translation and rotation. Considering the non-linear structure of the manifold on which these shape trajectories are lying, the use of the conventional machine learning tools and the standard computational tools cannot be straightforward. Hence, we make use of geometric steps related to the Riemannian geometry in order to handle the problem of nonlinearity. Our first contribution is a geometric-functional framework for 3D gait analysis with a direct application to behavioral biometric recognition and physical performance assessment. We opt for an extension of the functional Principal Component Analysis to the underlying space. This functional analysis of trajectories, grounding on the geometry of the space of representation, allows to extract compact and efficient biometric signatures. In addition, we also propose a geometric deep convolutional auto-encoder (DCAE) for the purpose of gait recognition from time-varying 3D skeletal data. To accommodate the Neural Network architectures to obtained manifold-valued trajectories on the underlying non-linear space S, these trajectories are mapped to a certain vector space by means of someRiemannien geometry tools, prior to the encoding-decoding scheme. Without applying any prior temporal alignment step (e.g., Dynamic Time Warping) or modeling (e.g., HMM, RNN), they are then fed to a convolutional auto-encoder to build an identity-relevant latent space that showed discriminating capacities for identifying persons when no Temporal Alignment is applied to the time-parametrized gait trajectories: Efficient gait patterns are extracted. Both approaches were tested on several publicly available datasets and shows promising results
Cumin, Julien. "Reconnaissance et prédiction d'activités dans la maison connectée". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM071/document.
Texto completoUnderstanding the context of a home is essential in order to provide services to occupants that fit their situations and thus fulfil their needs. One example of service that such a context-aware smart home could provide is that of a communication assistant, which can for example advise correspondents outside the home on the availability for communication of occupants. In order to implement such a service, it is indeed required that the home understands the situations of occupants, in order to derive their availability.In this thesis, we first propose a definition of context in homes. We argue that one of the primary context dimensions necessary for a system to be context-aware is the activity of occupants. As such, we then study the problem of recognizing activities, from ambient smart home sensors. We propose a new supervised place-based approach which both improves activity recognition accuracy as well as computing times compared to standard approaches.Smart home services, such as our communication assistance example, may often need to anticipate future situations. In particular, they need to anticipate future activities of occupants. Therefore, we design a new supervised activity prediction model, based on previous state-of-the-art work. We propose a number of extensions to improve prediction accuracy based on the specificities of smart home environments.Finally, we study the problem of inferring the availability of occupants for communication, in order to illustrate the feasibility of our communication assistant example. We argue that availability can be inferred from primary context dimensions such as place and activity (which can be recognized or predicted using our previous contributions), and by taking into consideration the correspondent initiating the communication as well as the modality of communication used. We discuss the impact of the activity recognition step on availability inference.We evaluate those contributions on various state-of-the-art datasets, as well as on a new dataset of activities and availabilities in homes which we constructed specifically for the purposes of this thesis: Orange4Home. Through our contributions to these 3 problems, we demonstrate the way in which an example context-aware communication assistance service can be implemented, which can advise on future availability for communication of occupants. More generally, we show how secondary context dimensions such as availability can be inferred from other context dimensions, in particular from activity. Highly accurate activity recognition and prediction are thus mandatory for a smart home to achieve context awareness
Devineau, Guillaume. "Deep learning for multivariate time series : from vehicle control to gesture recognition and generation". Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLM037.
Texto completoArtificial intelligence is the scientific field which studies how to create machines that are capable of intelligent behaviour. Deep learning is a family of artificial intelligence methods based on neural networks. In recent years, deep learning has lead to groundbreaking developments in the image and natural language processing fields. However, in many domains, input data consists in neither images nor text documents, but in time series that describe the temporal evolution of observed or computed quantities. In this thesis, we study and introduce different representations for time series, based on deep learning models. Firstly, in the autonomous driving domain, we show that, the analysis of a temporal window by a neural network can lead to better vehicle control results than classical approaches that do not use neural networks, especially in highly-coupled situations. Secondly, in the gesture and action recognition domain, we introduce 1D parallel convolutional neural network models. In these models, convolutions are performed over the temporal dimension, in order for the neural network to detect -and benefit from- temporal invariances. Thirdly, in the human pose motion generation domain, we introduce 2D convolutional generative adversarial neural networks where the spatial and temporal dimensions are convolved in a joint manner. Finally, we introduce an embedding where spatial representations of human poses are sorted in a latent space based on their temporal relationships
Libros sobre el tema "Apprentissage de données et de connaissance humaine"
Ontario. Esquisse de cours 12e année: Mathématiques de la gestion des données mdm4u cours préuniversitaire. Vanier, Ont: CFORP, 2002.
Buscar texto completoOntario. Esquisse de cours 12e année: Géographie mondiale: le milieu humain cgu4u cours préuniversitaire. Vanier, Ont: CFORP, 2002.
Buscar texto completoOntario. Esquisse de cours 12e année: L'église et la culture hre4m. Vanier, Ont: CFORP, 2007.
Buscar texto completoOntario. Esquisse de cours 12e année: Histoire de l'Occident et du monde chy4u. Vanier, Ont: CFORP, 2002.
Buscar texto completoOntario. Esquisse de cours 12e année: Politique canadienne et mondiale cpw4u cours préuniversitaire. Vanier, Ont: CFORP, 2002.
Buscar texto completoOntario. Esquisse de cours 12e année: Exploration et création artistique aea4o cours ouvert. Vanier, Ont: CFORP, 2002.
Buscar texto completoOntario. Esquisse de cours 12e année: Philosphie; approches et problématiques hzt4u cours préuniversitaire. Vanier, Ont: CFORP, 2002.
Buscar texto completoOntario. Esquisse de cours 12e année: Individus, familles et sociétés hhs4m cours préuniversitaire. Vanier, Ont: CFORP, 2002.
Buscar texto completoOntario. Esquisse de cours 12e année: Vie active et santé ppl4o cours ouvert. Vanier, Ont: CFORP, 2002.
Buscar texto completoOntario. Esquisse de cours 12e année: Changements et défis sociaux hsb4m cours préuniversitaire. Vanier, Ont: CFORP, 2002.
Buscar texto completoCapítulos de libros sobre el tema "Apprentissage de données et de connaissance humaine"
FLEURY SOARES, Gustavo y Induraj PUDHUPATTU RAMAMURTHY. "Comparaison de modèles d’apprentissage automatique et d’apprentissage profond". En Optimisation et apprentissage, 153–71. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch6.
Texto completoWANG, Xinxia, Xialing SHEN y Jing GUO. "La métaphore dans les dictionnaires bilingues d’apprentissage :". En Dictionnaires et apprentissage des langues, 79–88. Editions des archives contemporaines, 2021. http://dx.doi.org/10.17184/eac.4627.
Texto completo