Tesis sobre el tema "Apprentissage à partir de peu d'exemples"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 17 mejores tesis para su investigación sobre el tema "Apprentissage à partir de peu d'exemples".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Bollinger, Toni. "Généralisation en apprentissage à partir d'exemples". Paris 11, 1986. http://www.theses.fr/1986PA112064.
Texto completoThis thesis treats two aspects of the problem of generalization in machine learning. First, we give a formal definition of the relation "more general" which we deduce from our notion of an example that is accepted by a description. We present also a methodology for determining if one description is more general than another. In the second part, we describe the generalization algorithm AGAPE based on structural matching. This algorithm tries to preserve a maximum of information common to the examples by transforming the descriptions of the examples until they match structurally, i. E. Until the descriptions are almost identical. At the end of this thesis, we present some extensions of this algorithm especially designed for enabling the treatement of counter-examples
Bollinger, Toni. "Généralisation en apprentissage a partir d'exemples". Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37596263z.
Texto completoHANSER, THIERRY. "Apprentissage automatique de methodes de synthese a partir d'exemples". Université Louis Pasteur (Strasbourg) (1971-2008), 1993. http://www.theses.fr/1993STR13106.
Texto completoGautheron, Léo. "Construction de Représentation de Données Adaptées dans le Cadre de Peu d'Exemples Étiquetés". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSES044.
Texto completoMachine learning consists in the study and design of algorithms that build models able to handle non trivial tasks as well as or better than humans and hopefully at a lesser cost.These models are typically trained from a dataset where each example describes an instance of the same task and is represented by a set of characteristics and an expected outcome or label which we usually want to predict.An element required for the success of any machine learning algorithm is related to the quality of the set of characteristics describing the data, also referred as data representation or features.In supervised learning, the more the features describing the examples are correlated with the label, the more effective the model will be.There exist three main families of features: the ``observable'', the ``handcrafted'' and the ``latent'' features that are usually automatically learned from the training data.The contributions of this thesis fall into the scope of this last category. More precisely, we are interested in the specific setting of learning a discriminative representation when the number of data of interest is limited.A lack of data of interest can be found in different scenarios.First, we tackle the problem of imbalanced learning with a class of interest composed of a few examples by learning a metric that induces a new representation space where the learned models do not favor the majority examples.Second, we propose to handle a scenario with few available examples by learning at the same time a relevant data representation and a model that generalizes well through boosting models using kernels as base learners approximated by random Fourier features.Finally, to address the domain adaptation scenario where the target set contains no label while the source examples are acquired in different conditions, we propose to reduce the discrepancy between the two domains by keeping only the most similar features optimizing the solution of an optimal transport problem between the two domains
Henniche, M'hammed. "Apprentissage incrémental à partir d'exemples dans un espace de recherche réduit". Paris 13, 1998. http://www.theses.fr/1998PA13A001.
Texto completoTruong, Nguyen Tuong Vinh. "Apprentissage de fonctions d'ordonnancement avec peu d'exemples étiquetés : une application au routage d'information, au résumé de textes et au filtrage collaboratif". Paris 6, 2009. http://www.theses.fr/2009PA066568.
Texto completoBarnachon, Mathieu. "Reconnaissance d'actions en temps réel à partir d'exemples". Phd thesis, Université Claude Bernard - Lyon I, 2013. http://tel.archives-ouvertes.fr/tel-00820113.
Texto completoLu, Cheng-Ren. "Apprentissage incrémental par analogie : le système OGUST⁺". Paris 11, 1989. http://www.theses.fr/1989PA112393.
Texto completoMordelet, Fantine. "Méthodes d'apprentissage statistique à partir d'exemples positifs et indéterminés en biologie". Phd thesis, École Nationale Supérieure des Mines de Paris, 2010. http://pastel.archives-ouvertes.fr/pastel-00566401.
Texto completoNogry, Sandra Mille Alain. "Faciliter l'apprentissage à partir d'exemples en situation de résolution de problèmes Application au projet AMBRE /". Lyon : Université Lumière Lyon 2, 2005. http://theses.univ-lyon2.fr/sdx/theses/lyon2/2005/nogry_s.
Texto completoBlin, Laurent. "Apprentissage de structures d'arbres à partir d'exemples ; application à la prosodie pour la synthèse de la parole". Rennes 1, 2002. http://www.theses.fr/2002REN10117.
Texto completoAguirre, Cervantes José Luis. "Construction automatique de taxonomies à partir d'exemples dans un modèle de connaissances par objets". Grenoble INPG, 1989. http://www.theses.fr/1989INPG0067.
Texto completoBouthinon, Dominique. "Apprentissage à partir d'exemples ambigus : étude théorique et application à la découverte de structures communes à un ensemble de séquences d'ARN". Paris 13, 1996. http://www.theses.fr/1996PA132033.
Texto completoVOGEL, HUGUES. "Apprentissage automatique de connaissances reactionnelles : acquisition d'exemples de reactions a partir de bases de donnees et prise en compte des conditions reactionnelles". Université Louis Pasteur (Strasbourg) (1971-2008), 2000. http://www.theses.fr/2000STR13062.
Texto completoVrain, Christel. "Un outil pour la généralisation utilisant systématiquement les théorèmes : le système OGUST". Paris 11, 1987. http://www.theses.fr/1987PA112302.
Texto completoGuiroy, Simon. "Towards Understanding Generalization in Gradient-Based Meta-Learning". Thèse, 2019. http://hdl.handle.net/1866/23783.
Texto completoIn this master's thesis, we study the generalization of neural networks in gradient-based meta-learning by analyzing various properties of the objective landscapes. Meta-learning, a challenging paradigm where models not only have to learn a task but beyond that, are trained for ``learning to learn" as they must adapt to new tasks and environments with very limited data about them. With research on the objective landscapes of neural networks in classical supervised having provided some answers regarding their ability to generalize for new data points, we propose similar analyses aimed at understanding generalization in meta-learning. We first introduce the literature on objective landscapes of neural networks in Section \ref{sec:intro:objective_landscapes}. We then introduce the literature of meta-learning in Section \ref{chap:prof_forcing}, concluding our introduction with the approach of gradient-based meta-learning, a meta-learning setup that bears strong similarities to the traditional supervised learning setup through stochastic gradient-based optimization. At the time of writing of this thesis, and to the best of our knowledge, this is the first work to empirically study the objective landscapes in gradient-based meta-learning, especially in the context of deep learning. We notably provide some insights on some properties of those landscapes that appear correlated to the generalization to new tasks. We experimentally demonstrate that as meta-training progresses, the meta-test solutions, obtained after adapting the meta-train solution of the model, to new tasks via few steps of gradient-based fine-tuning, become flatter, lower in loss, and further away from the meta-train solution. We also show that those meta-test solutions become flatter even as generalization starts to degrade, thus providing experimental evidence against the correlation between generalization and flat minima in the paradigm of gradient-based meta-leaning. Furthermore, we provide empirical evidence that generalization to new tasks is correlated with the coherence between their adaptation trajectories in parameter space, measured by the average cosine similarity between task-specific trajectory directions, starting from a same meta-train solution. We also show that coherence of meta-test gradients, measured by the average inner product between the task-specific gradient vectors evaluated at meta-train solution, is also correlated with generalization. Based on these observations, we propose a novel regularizer for the Model Agnostic Meta-Learning (MAML) algorithm and provide experimental evidence for its effectiveness.
Batot, Edouard. "From examples to knowledge in model-driven engineering : a holistic and pragmatic approach". Thèse, 2018. http://hdl.handle.net/1866/21737.
Texto completo