Artículos de revistas sobre el tema "Applied Physics, Magnetic Resonance Imaging, Magnetic Particle Imaging"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Applied Physics, Magnetic Resonance Imaging, Magnetic Particle Imaging".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Herrmann, Anne, Arthur Taylor, Patricia Murray, Harish Poptani y Violaine Sée. "Magnetic Resonance Imaging for Characterization of a Chick Embryo Model of Cancer Cell Metastases". Molecular Imaging 17 (1 de enero de 2018): 153601211880958. http://dx.doi.org/10.1177/1536012118809585.
Texto completoBaki, Abdulkader, Amani Remmo, Norbert Löwa, Frank Wiekhorst y Regina Bleul. "Albumin-Coated Single-Core Iron Oxide Nanoparticles for Enhanced Molecular Magnetic Imaging (MRI/MPI)". International Journal of Molecular Sciences 22, n.º 12 (9 de junio de 2021): 6235. http://dx.doi.org/10.3390/ijms22126235.
Texto completoCenova, Iva, David Kauzlarić, Andreas Greiner y Jan G. Korvink. "Constrained simulations of flow in haemodynamic devices: towards a computational assistance of magnetic resonance imaging measurements". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, n.º 1945 (28 de junio de 2011): 2494–501. http://dx.doi.org/10.1098/rsta.2011.0028.
Texto completoTOUFIQ, ARBAB MOHAMMAD, FENGPING WANG, QURAT-UL-AIN JAVED, QUANSHUI LI y YAN LI. "PHOTOLUMINESCENCE SPECTRA AND MAGNETIC PROPERTIES OF HYDROTHERMALLY SYNTHESIZED MnO2 NANORODS". Modern Physics Letters B 27, n.º 29 (15 de noviembre de 2013): 1350211. http://dx.doi.org/10.1142/s0217984913502114.
Texto completoRagam, Prashanth y Devidas Sahebraoji Nimaje. "Evaluation and prediction of blast-induced peak particle velocity using artificial neural network: A case study". Noise & Vibration Worldwide 49, n.º 3 (marzo de 2018): 111–19. http://dx.doi.org/10.1177/0957456518763161.
Texto completoKorsakova, Alina S., Dzmitry A. Kotsikau, Yulyan S. Haiduk y Vladimir V. Pankov. "Synthesis and Physicochemical Properties of MnxFe3–xO4 Solid Solutions". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, n.º 4 (1 de diciembre de 2020): 466–72. http://dx.doi.org/10.17308/kcmf.2020.22/3076.
Texto completoPaysen, Hendrik, Norbert Loewa, Karol Weber, Olaf Kosch, James Wells, Tobias Schaeffter y Frank Wiekhorst. "Imaging and quantification of magnetic nanoparticles: Comparison of magnetic resonance imaging and magnetic particle imaging". Journal of Magnetism and Magnetic Materials 475 (abril de 2019): 382–88. http://dx.doi.org/10.1016/j.jmmm.2018.10.082.
Texto completoWegner, Franz, Kerstin Lüdtke-Buzug, Sjef Cremers, Thomas Friedrich, Malte M. Sieren, Julian Haegele, Martin A. Koch et al. "Bimodal Interventional Instrument Markers for Magnetic Particle Imaging and Magnetic Resonance Imaging—A Proof-of-Concept Study". Nanomaterials 12, n.º 10 (21 de mayo de 2022): 1758. http://dx.doi.org/10.3390/nano12101758.
Texto completoGladden, Lynn F. "Applications of Nuclear Magnetic Resonance Imaging in Particle Technology". Particle & Particle Systems Characterization 12, n.º 2 (abril de 1995): 59–67. http://dx.doi.org/10.1002/ppsc.19950120203.
Texto completoKluth, Tobias. "Mathematical models for magnetic particle imaging". Inverse Problems 34, n.º 8 (12 de junio de 2018): 083001. http://dx.doi.org/10.1088/1361-6420/aac535.
Texto completoEpstein, Charles L. "Magnetic resonance imaging in inhomogeneous fields". Inverse Problems 20, n.º 3 (19 de marzo de 2004): 753–80. http://dx.doi.org/10.1088/0266-5611/20/3/007.
Texto completoGarcia, Nissa C., Dindi Yu, Li Yao y Shoujun Xu. "Optical atomic magnetometer at body temperature for magnetic particle imaging and nuclear magnetic resonance". Optics Letters 35, n.º 5 (24 de febrero de 2010): 661. http://dx.doi.org/10.1364/ol.35.000661.
Texto completoTaylor, Annette F. y Melanie M. Britton. "Magnetic resonance imaging of chemical waves in porous media". Chaos: An Interdisciplinary Journal of Nonlinear Science 16, n.º 3 (2006): 037103. http://dx.doi.org/10.1063/1.2228129.
Texto completoDong, Guozhi, Michael Hintermüller y Kostas Papafitsoros. "Quantitative Magnetic Resonance Imaging: From Fingerprinting to Integrated Physics-Based Models". SIAM Journal on Imaging Sciences 12, n.º 2 (enero de 2019): 927–71. http://dx.doi.org/10.1137/18m1222211.
Texto completoPuiseux, Thomas, Anou Sewonu, Ramiro Moreno, Simon Mendez y Franck Nicoud. "Numerical simulation of time-resolved 3D phase-contrast magnetic resonance imaging". PLOS ONE 16, n.º 3 (26 de marzo de 2021): e0248816. http://dx.doi.org/10.1371/journal.pone.0248816.
Texto completoIvanov, V. A. "History and prospects of employing magnetic-resonance imaging". Journal of Optical Technology 67, n.º 4 (1 de abril de 2000): 399. http://dx.doi.org/10.1364/jot.67.000399.
Texto completoMeribout, Mahmoud y Mohit Kalra. "A portable system for two dimensional magnetic particle imaging". Measurement 152 (febrero de 2020): 107281. http://dx.doi.org/10.1016/j.measurement.2019.107281.
Texto completoGarrido, Leoncio y José Sampayo. "Proton Magnetic Resonance Imaging of Specimens in Simulated Microgravity". Microgravity Science and Technology 21, n.º 4 (27 de enero de 2009): 305–10. http://dx.doi.org/10.1007/s12217-009-9105-0.
Texto completoCirilli, Manuela. "From particle physics: To medtech and biomedical research". Europhysics News 49, n.º 5-6 (septiembre de 2018): 35–38. http://dx.doi.org/10.1051/epn/2018507.
Texto completoHammernik, Kerstin, Thomas Kustner, Burhaneddin Yaman, Zhengnan Huang, Daniel Rueckert, Florian Knoll y Mehmet Akcakaya. "Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging". IEEE Signal Processing Magazine 40, n.º 1 (enero de 2023): 98–114. http://dx.doi.org/10.1109/msp.2022.3215288.
Texto completoDuan, Wenjuan, Guifang Liu, Cheng Guo y Yunhui Qu. "Preparation of Nano Materials Fe@Fe3O4 and Its Application in Magnetic Resonance Imaging for Liver Functions". Science of Advanced Materials 13, n.º 5 (1 de mayo de 2021): 906–16. http://dx.doi.org/10.1166/sam.2021.3994.
Texto completoTaleb-Ahmed, Abdelmalik. "Method to segment the brain automatically applied to a magnetic resonance imaging sequence". Optical Engineering 42, n.º 7 (1 de julio de 2003): 1976. http://dx.doi.org/10.1117/1.1580832.
Texto completoChernoburova, Olga, Mathieu Jenny, Sébastien Kiesgen De Richter, Maude Ferrari y Akira Otsuki. "Dynamic Behavior of Dilute Bentonite Suspensions under Different Chemical Conditions Studied via Magnetic Resonance Imaging Velocimetry". Colloids and Interfaces 2, n.º 4 (27 de septiembre de 2018): 41. http://dx.doi.org/10.3390/colloids2040041.
Texto completoJansons, Kalvis M. y Daniel C. Alexander. "Persistent angular structure: new insights from diffusion magnetic resonance imaging data". Inverse Problems 19, n.º 5 (22 de agosto de 2003): 1031–46. http://dx.doi.org/10.1088/0266-5611/19/5/303.
Texto completoBringout, Gaël, Wolfgang Erb y Jürgen Frikel. "A new 3D model for magnetic particle imaging using realistic magnetic field topologies for algebraic reconstruction". Inverse Problems 36, n.º 12 (1 de diciembre de 2020): 124002. http://dx.doi.org/10.1088/1361-6420/abb446.
Texto completoWróblewski, Przemysław y Waldemar Smolik. "COIL DESIGN WITH LITZE WIRE FOR MAGNETIC PARTICLE SPECTROMETRY". Informatics Control Measurement in Economy and Environment Protection 7, n.º 1 (30 de marzo de 2017): 0. http://dx.doi.org/10.5604/01.3001.0010.4605.
Texto completoWu, Zekun, Zhen Chai, Yunkai Mao, Hao Tian y Zhanchao Liu. "High-resolution optical magnetic resonance imaging of electronic spin polarization in miniaturized atomic sensors". Applied Physics Letters 121, n.º 20 (14 de noviembre de 2022): 204103. http://dx.doi.org/10.1063/5.0106964.
Texto completoKluth, Tobias, Bangti Jin y Guanglian Li. "On the degree of ill-posedness of multi-dimensional magnetic particle imaging". Inverse Problems 34, n.º 9 (17 de julio de 2018): 095006. http://dx.doi.org/10.1088/1361-6420/aad015.
Texto completoLuchetti, Alessandro, Davide Milani, Francesca Ruffini, Rossella Galli, Andrea Falini, Angelo Quattrini, Giuseppe Scotti et al. "Monoclonal Antibodies Conjugated with Superparamagnetic Iron Oxide Particles Allow Magnetic Resonance Imaging Detection of Lymphocytes in the Mouse Brain". Molecular Imaging 11, n.º 2 (1 de marzo de 2012): 7290.2011.00032. http://dx.doi.org/10.2310/7290.2011.00032.
Texto completoQi, Xinxin, Ming Yao, Mei Jin y Haoyou Guo. "Application of Magnetic Resonance Imaging Based on Fe3O4 Nanoparticles in the Treatment of Cerebrovascular Diseases". Journal of Nanoscience and Nanotechnology 21, n.º 2 (1 de febrero de 2021): 843–51. http://dx.doi.org/10.1166/jnn.2021.18697.
Texto completoBhalodiya, Jayendra M., Sarah N. Lim Choi Keung y Theodoros N. Arvanitis. "Magnetic resonance image-based brain tumour segmentation methods: A systematic review". DIGITAL HEALTH 8 (enero de 2022): 205520762210741. http://dx.doi.org/10.1177/20552076221074122.
Texto completoAthalye, Vivek, Michael Lustig y Martin Uecker. "Parallel magnetic resonance imaging as approximation in a reproducing kernel Hilbert space". Inverse Problems 31, n.º 4 (20 de marzo de 2015): 045008. http://dx.doi.org/10.1088/0266-5611/31/4/045008.
Texto completoKimmich, Rainer. "Multidimensional NQR: Imaging and Exchange Spectroscopy". Zeitschrift für Naturforschung A 51, n.º 5-6 (1 de junio de 1996): 330–36. http://dx.doi.org/10.1515/zna-1996-5-604.
Texto completoBonnard, Bernard, Steffen J. Glaser y Dominique Sugny. "A Review of Geometric Optimal Control for Quantum Systems in Nuclear Magnetic Resonance". Advances in Mathematical Physics 2012 (2012): 1–29. http://dx.doi.org/10.1155/2012/857493.
Texto completoKnopp, T., M. Erbe, T. F. Sattel, S. Biederer y T. M. Buzug. "A Fourier slice theorem for magnetic particle imaging using a field-free line". Inverse Problems 27, n.º 9 (29 de julio de 2011): 095004. http://dx.doi.org/10.1088/0266-5611/27/9/095004.
Texto completoErb, W., A. Weinmann, M. Ahlborg, C. Brandt, G. Bringout, T. M. Buzug, J. Frikel et al. "Mathematical analysis of the 1D model and reconstruction schemes for magnetic particle imaging". Inverse Problems 34, n.º 5 (20 de abril de 2018): 055012. http://dx.doi.org/10.1088/1361-6420/aab8d1.
Texto completoKluth, Tobias. "Erratum for Mathematical models for magnetic particle imaging (2018 Inverse Problems 34 083001)". Inverse Problems 36, n.º 3 (11 de febrero de 2020): 039601. http://dx.doi.org/10.1088/1361-6420/ab5483.
Texto completoStueber, Deanna D., Jake Villanova, Itzel Aponte, Zhen Xiao y Vicki L. Colvin. "Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends". Pharmaceutics 13, n.º 7 (24 de junio de 2021): 943. http://dx.doi.org/10.3390/pharmaceutics13070943.
Texto completoKharauzov, A. K., P. P. Vasil’ev, A. V. Sokolov, V. A. Fokin y Yu E. Shelepin. "Functional magnetic resonance imaging analysis of the human brain in texture recognition tasks". Journal of Optical Technology 85, n.º 8 (1 de agosto de 2018): 463. http://dx.doi.org/10.1364/jot.85.000463.
Texto completoArduino, Alessandro, Oriano Bottauscio, Mario Chiampi y Luca Zilberti. "Magnetic resonance-based imaging of human electric properties with phaseless contrast source inversion". Inverse Problems 34, n.º 8 (11 de junio de 2018): 084002. http://dx.doi.org/10.1088/1361-6420/aac536.
Texto completoSavukov, Igor, Young Jin Kim y Shaun Newman. "High-resolution ultra-low field magnetic resonance imaging with a high-sensitivity sensing coil". Journal of Applied Physics 132, n.º 17 (7 de noviembre de 2022): 174503. http://dx.doi.org/10.1063/5.0123692.
Texto completoNguyen, Dang Van, Jing-Rebecca Li, Denis Grebenkov y Denis Le Bihan. "A finite elements method to solve the Bloch–Torrey equation applied to diffusion magnetic resonance imaging". Journal of Computational Physics 263 (abril de 2014): 283–302. http://dx.doi.org/10.1016/j.jcp.2014.01.009.
Texto completoKim, Doohyeon, Jihun Kang, Ehsan Adeeb, Gyu-Han Lee, Dong Hyun Yang y Hojin Ha. "Comparison of Four-Dimensional Flow Magnetic Resonance Imaging and Particle Image Velocimetry to Quantify Velocity and Turbulence Parameters". Fluids 6, n.º 8 (6 de agosto de 2021): 277. http://dx.doi.org/10.3390/fluids6080277.
Texto completoYi, Xianghua, Yongmei Ding, Yu Zeng, Caicun Zhou, Benfang Luo, Shuyan Meng, Weiwei Rui, Yinmin Zhao y Wei Li. "Magnetic Resonance Imaging Contrast Agent: cRGD-Ferric Oxide Nanometer Particle and Its Role in the Diagnosis of Tumor". Journal of Nanoscience and Nanotechnology 11, n.º 5 (1 de mayo de 2011): 3800–3807. http://dx.doi.org/10.1166/jnn.2011.3861.
Texto completoSchier, Peter, Maik Liebl, Uwe Steinhoff, Michael Handler, Frank Wiekhorst y Daniel Baumgarten. "Optimizing Excitation Coil Currents for Advanced Magnetorelaxometry Imaging". Journal of Mathematical Imaging and Vision 62, n.º 2 (17 de diciembre de 2019): 238–52. http://dx.doi.org/10.1007/s10851-019-00934-8.
Texto completoNunes, Teresa G. "Influence of Grain Size on the Setting of Portland Cement: A Stray-Field Magnetic Resonance Imaging Study". Materials Science Forum 514-516 (mayo de 2006): 1633–37. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.1633.
Texto completoSenior, A. y F. Honary. "Observations of the spatial structure of electron precipitation pulsations using an imaging riometer". Annales Geophysicae 21, n.º 4 (30 de abril de 2003): 997–1003. http://dx.doi.org/10.5194/angeo-21-997-2003.
Texto completoWu, Yuli, Junwei Song, Shengcui Liu, Xianglei Wei y Weiwei Chen. "Application of Gold Nanoparticles in Magnetic Resonance Imaging for Targeted Diagnosis and Treatment of Breast Cancer". Science of Advanced Materials 13, n.º 9 (1 de septiembre de 2021): 1595–602. http://dx.doi.org/10.1166/sam.2021.4062.
Texto completoBudnyk, A. P., T. A. Lastovina, A. L. Bugaev, V. A. Polyakov, K. S. Vetlitsyna-Novikova, M. A. Sirota, K. G. Abdulvakhidov, A. G. Fedorenko, E. O. Podlesnaya y A. V. Soldatov. "Gd3+-Doped Magnetic Nanoparticles for Biomedical Applications". Journal of Spectroscopy 2018 (2 de agosto de 2018): 1–9. http://dx.doi.org/10.1155/2018/1412563.
Texto completoChang, Catie, Erika P. Raven y Jeff H. Duyn. "Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, n.º 2067 (13 de mayo de 2016): 20150188. http://dx.doi.org/10.1098/rsta.2015.0188.
Texto completo