Literatura académica sobre el tema "Aperiodic diffractive elements"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Aperiodic diffractive elements".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Aperiodic diffractive elements"

1

Fernández, Roberto, Sergi Gallego, Andrés Márquez, Cristian Neipp, Eva Calzado, Jorge Francés, Marta Morales-Vidal y Augusto Beléndez. "Complex Diffractive Optical Elements Stored in Photopolymers". Polymers 11, n.º 12 (21 de noviembre de 2019): 1920. http://dx.doi.org/10.3390/polym11121920.

Texto completo
Resumen
We study the recording of complex diffractive elements, such as achromatic lenses, fork gratings or axicons. Using a 3-D diffusion model, previously validated, we are able to predict the behavior of photopolymer during recording. The experimental recording of these complex elements is possible thanks to a new generation spatial light modulator capable of generating periodic and aperiodic profiles. Both experimental and theoretical are analyzed and compared. The results show not only the good response of theoretical model to predict the behavior of the materials, but also the viability of photopolymers to store these kind of elements.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Prather, Dennis W., Joseph N. Mait, Mark S. Mirotznik y James P. Collins. "Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements". Journal of the Optical Society of America A 15, n.º 6 (1 de junio de 1998): 1599. http://dx.doi.org/10.1364/josaa.15.001599.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Merkel, M., T. Schemme y C. Denz. "Aperiodic biomimetic Vogel spirals as diffractive optical elements for tailored light distribution in functional polymer layers". Journal of Optics 23, n.º 6 (29 de abril de 2021): 065401. http://dx.doi.org/10.1088/2040-8986/abf8cc.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Porta, Jason, Jeff Lovelace y Gloria E. O. Borgstahl. "How to assign a (3 + 1)-dimensional superspace group to an incommensurately modulated biological macromolecular crystal". Journal of Applied Crystallography 50, n.º 4 (30 de junio de 2017): 1200–1207. http://dx.doi.org/10.1107/s1600576717007294.

Texto completo
Resumen
Periodic crystal diffraction is described using a three-dimensional (3D) unit cell and 3D space-group symmetry. Incommensurately modulated crystals are a subset of aperiodic crystals that need four to six dimensions to describe the observed diffraction pattern, and they have characteristic satellite reflections that are offset from the main reflections. These satellites have a non-integral relationship to the primary lattice and requireqvectors for processing. Incommensurately modulated biological macromolecular crystals have been frequently observed but so far have not been solved. The authors of this article have been spearheading an initiative to determine this type of crystal structure. The first step toward structure solution is to collect the diffraction data making sure that the satellite reflections are well separated from the main reflections. Once collected they can be integrated and then scaled with appropriate software. Then the assignment of the superspace group is needed. The most common form of modulation is in only one extra direction and can be described with a (3 + 1)D superspace group. The (3 + 1)D superspace groups for chemical crystallographers are fully described in Volume C ofInternational Tables for Crystallography. This text includes all types of crystallographic symmetry elements found in small-molecule crystals and can be difficult for structural biologists to understand and apply to their crystals. This article provides an explanation for structural biologists that includes only the subset of biological symmetry elements and demonstrates the application to a real-life example of an incommensurately modulated protein crystal.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Aperiodic diffractive elements"

1

Prather, Dennis W., Mark S. Mirotznik y Shouyuan Shi. "5. Electromagnetic Models for Finite Aperiodic Diffractive Optical Elements". En Mathematical Modeling in Optical Science, 141–77. Society for Industrial and Applied Mathematics, 2001. http://dx.doi.org/10.1137/1.9780898717594.ch5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Aperiodic diffractive elements"

1

Prather, Dennis W. y Shouyuan Shi. "Hybrid scalar-vector method for the analysis of electrically large finite aperiodic diffractive optical elements". En Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Ivan Cindrich, Sing H. Lee y Richard L. Sutherland. SPIE, 1999. http://dx.doi.org/10.1117/12.349312.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Feng, Di, Yingbai Yan y Qiaofeng Tan. "Vector-based synthesis of finite aperiodic diffractive micro-optical elements with subwavelength structures as beam deflectors". En Fifth International Symposium on Instrumentation and Control Technology, editado por Guangjun Zhang, Huijie Zhao y Zhongyu Wang. SPIE, 2003. http://dx.doi.org/10.1117/12.521407.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mait, Joseph N., Dennis W. Prather y Mark S. Mirotznik. "Scalar-Based Design of Binary Subwavelength Diffractive Lenses". En Diffractive Optics and Micro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/domo.1998.dtub.3.

Texto completo
Resumen
Recent research1–9 has shown that if a binary-phase diffractive optical element (DOE) has features that are on the order of the illuminating wavelength, the performance limits set by scalar-based diffraction theory can be overcome. In fact, diffraction efficiencies in excess of 90% have been predicted for binary gratings that have subwavelength features.1,4,5 Due primarily to the availability of tools for modeling, the analysis and design of subwavelength DOEs (SWDOEs) has concentrated primarily on gratings.1-7,10 To overcome this limitation, we have developed numerical routines that use a boundary element method (BEM) to analyze diffraction from finite extent, aperiodic DOEs.11 In this paper we consider diffractive design, in particular, the design of diffractive lenses, subject to the constraints of fabrication.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía