Literatura académica sobre el tema "Anticancer drugs"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Anticancer drugs".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Anticancer drugs"
D, Subba Reddy, Prasanthi G, Amruth Raj S, Hari Krishna T, Sowjanya K y Shantha Kumari K. "EVALUATION OF ANTICANCER GENERIC DRUGS AND BRANDED DRUGS". Indian Research Journal of Pharmacy and Science 5, n.º 1 (marzo de 2018): 1378–91. http://dx.doi.org/10.21276/irjps.2018.5.1.16.
Texto completoReese, David M. "Anticancer drugs". Nature 378, n.º 6557 (diciembre de 1995): 532. http://dx.doi.org/10.1038/378532c0.
Texto completoKutty, Dr A. V. M. "Usefulness of Phytochemicals as Anticancer Drugs". JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES 16, n.º 1 (19 de marzo de 2019): 1–2. http://dx.doi.org/10.58739/jcbs/v09i1.7.
Texto completoAtkins, Joshua H. y Leland J. Gershell. "Selective anticancer drugs". Nature Reviews Drug Discovery 1, n.º 7 (julio de 2002): 491–92. http://dx.doi.org/10.1038/nrd842.
Texto completoAtkins, Joshua H. y Leland J. Gershell. "Selective anticancer drugs". Nature Reviews Cancer 2, n.º 9 (septiembre de 2002): 645–46. http://dx.doi.org/10.1038/nrc900.
Texto completoBibby, M. C. "Combretastatin anticancer drugs". Drugs of the Future 27, n.º 5 (2002): 475. http://dx.doi.org/10.1358/dof.2002.027.05.668645.
Texto completoMeegan, Mary J. y Niamh M. O’Boyle. "Special Issue “Anticancer Drugs”". Pharmaceuticals 12, n.º 3 (16 de septiembre de 2019): 134. http://dx.doi.org/10.3390/ph12030134.
Texto completoCiarimboli, Giuliano. "Anticancer Platinum Drugs Update". Biomolecules 11, n.º 11 (4 de noviembre de 2021): 1637. http://dx.doi.org/10.3390/biom11111637.
Texto completoZhang, Jason Y. "Apoptosis-based anticancer drugs". Nature Reviews Drug Discovery 1, n.º 2 (febrero de 2002): 101–2. http://dx.doi.org/10.1038/nrd742.
Texto completoBlagosklonny, Mikhail V. "Teratogens as Anticancer Drugs". Cell Cycle 4, n.º 11 (22 de agosto de 2005): 1518–21. http://dx.doi.org/10.4161/cc.4.11.2208.
Texto completoTesis sobre el tema "Anticancer drugs"
Apps, MIchael Garry. "Platinum anticancer drugs and drug delivery systems". Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14409.
Texto completoKozlowska, Hanna. "Interaction of dexrazoxane with anticancer drugs". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0001/MQ32158.pdf.
Texto completoTao, Zhimin. "Analysis of cytotoxicity of anticancer drugs". Related electronic resource:, 2007. http://proquest.umi.com/pqdweb?did=1407688361&sid=4&Fmt=2&clientId=3739&RQT=309&VName=PQD.
Texto completoLiu, Tong. "The synthesis of novel anticancer drugs". Thesis, University of Glasgow, 2003. http://theses.gla.ac.uk/4464/.
Texto completoSong, Di. "Bladder tissue pharmacokinetics of anticancer drugs /". The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487940308433249.
Texto completoRatcliffe, Andrew J. "Synthesis of non-mutagenic anticancer drugs". Thesis, University of Bath, 1987. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378598.
Texto completoPettersson, Hanna Ilse. "Quinolinequinones as anticancer agents". Thesis, University of Exeter, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249038.
Texto completoWang, Shining. "DRUG DEVELOPMENT OF TARGETED ANTICANCER DRUGS BASED ON PK/PD INVESTIGATIONS". Diss., Temple University Libraries, 2008. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/2535.
Texto completoPh.D.
EGFR inhibitors, such as gefitinib, are examples of targeted anticancer drugs whose drug sensitivity is related to gene mutations that adds a pharmacogenetic [PG] dimension to any pharmacokinetic [PK] and pharmacodynamic [PD] analysis. The goal of this project was to characterize the PK/PD properties of gefitinib in tumors and then apply these results to design rational drug design regimens, and provide a foundation for future studies with EGFR inhibitors. Progressions of in vitro and in vivo studies were completed to understand the PK and PD behavior of gefitinib. In vitro cytotoxicity assays were first conducted to confirm the gefitinib sensitivity differences in a pair of human glioblastoma cell lines, LN229-wild-type EGFR and LN229-EGFRvIII mutant, an EGFR inhibitor-sensitizing mutation. Subsequent in vitro PD studies identified phosphorylated-ERK1/2 (pERK) as a common PD marker for both cell lines. To describe the most salient features of drug disposition and dynamics in the tumor, groups of mice bearing either subcutaneous LN229-wild-type EGFR or LN229-EGFRvIII mutant tumors were administered gefitinib at doses of 10 mg/kg intravenously (IV), 50 mg/kg intraarterially (IA) and 150 mg/kg orally (PO). In each group, gefitinib plasma and tumor concentrations were quantitated, as were tumoral pERK. Hybrid physiologically-based PK/PD models were developed for each tumor type, which consisted of a forcing function describing the plasma drug concentration-profile, a tumor compartment depicting drug disposition in the tumor, and a mechanistic target-response PD model characterizing pERK in the tumor. Gefitinib showed analogous PK properties in each tumor type, yet different PD characteristics consistent with the EGFR status of the tumors. Using the PK/PD model for each tumor type, simulations were done to define multiple-dose regimens for gefitinib that yielded equivalent PD profiles of pERK in each tumor type. Based on the designed PK/PD equivalent dosing regimens for each tumor type, gefitinib 150 mg/kg PO qd × 15 days and 65 mg/kg PO qd × 15 days multiple-dose studies were conducted in wild-type EGFR and EGFRvIII mutant tumor groups, respectively. In each tumor group, gefitinib plasma and tumor concentrations were measured on both day 1 and day 15, as were tumoral amounts of pERK. Different from single-dose model simulations, gefitinib showed nonlinear PK property in the wild-type tumor due to the down-regulation of membrane transporter ABCG2. Moreover, acquired resistance of tumoral pERK inhibition was observed in both tumor types. Nevertheless, gefitinib had an analogous growth suppression action in both tumor groups, supporting the equivalent PD dosing strategy. Overall, single-dose gefitinib PK/PD investigations in a pair of genetically distinct glioblastomas facilitated the development of hybrid physiologically-based PK/PD models for each tumor type, and further introduced a novel concept of PK/PD equivalent dosing regimens which could be applied in novel drug development paradigms. Preliminary multiple-dose gefitinib studies revealed more complex PK/PD characteristics that needed to be further explored.
Temple University--Theses
Leczkowska, Anna. "Non-covalent DNA-binding ruthenium anticancer drugs". Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1695/.
Texto completoYarema, Kevin J. (Kevin Jon). "Cellular responses to platinum-based anticancer drugs". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/33495.
Texto completoLibros sobre el tema "Anticancer drugs"
1938-, Pratt William B. y Pratt William B. 1938-, eds. The anticancer drugs. 2a ed. New York: Oxford University Press, 1994.
Buscar texto completoGarth, Powis, ed. Anticancer drugs: Reactive metabolism and drug interactions. Oxford, England: Pergamon Press, 1994.
Buscar texto completoAvendaño, Carmen. Medicinal chemistry of anticancer drugs. Amsterdam: Elsevier, 2008.
Buscar texto completoConvention, United States Pharmacopeial. Fact sheets on anticancer drugs. [Washington, D.C.?]: National Cancer Institute [distributor], 1994.
Buscar texto completoNational Cancer Institute (U.S.), ed. Fact sheets on anticancer drugs. [Bethesda, Md.?: National Cancer Institute, 1994.
Buscar texto completoSotiris, Missailidis, ed. Anticancer therapeutics. Chichester: John Wiley & Sons, 2008.
Buscar texto completo1964-, Spencer Peter y Holt Walter, eds. Anticancer drugs: Design, delivery and pharmacology. Hauppauge, NY: Nova Science Publishers, 2009.
Buscar texto completoSaeidnia, Soodabeh. New Approaches to Natural Anticancer Drugs. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14027-8.
Texto completoHacker, Miles P., John S. Lazo y Thomas R. Tritton, eds. Organ Directed Toxicities of Anticancer Drugs. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-2023-4.
Texto completoHildebrand, Jerzy, ed. Neurological Adverse Reactions to Anticancer Drugs. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76142-3.
Texto completoCapítulos de libros sobre el tema "Anticancer drugs"
Schacter, Lee, Marcel Rozencweig, Claude Nicaise, Renzo Canetta, Susan Kelley y Laurie Smaldone. "Anticancer Drugs". En Early Phase Drug Evaluation in Man, 644–54. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-10705-6_49.
Texto completoSchwab, Matthias, Elke Schaeffeler y Hiltrud Brauch. "Anticancer Drugs". En Metabolism of Drugs and Other Xenobiotics, 365–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch13.
Texto completoIsnard-Bagnis, Corinne, Vincent Launay-Vacher, Svetlana Karie y Gilbert Deray. "Anticancer drugs". En Clinical Nephrotoxins, 511–35. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-84843-3_22.
Texto completoZhao, Le, Zengyi Shao y Jacqueline V. Shanks. "Anticancer Drugs". En Industrial Biotechnology, 237–69. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527807833.ch8.
Texto completoGanguly, A. K. y Sesha Sridevi Alluri. "Anticancer Drugs". En Medicinal Chemistry, 89–101. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003182573-4.
Texto completoIsnard-Bagnis, Corinne y Gilbert Deray. "Anticancer drugs". En Clinical Nephrotoxins, 353–72. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/1-4020-2586-6_18.
Texto completoCateni, Francesca y Marina Zacchigna. "PEG–Anticancer Drugs". En Macromolecular Anticancer Therapeutics, 221–63. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0507-9_6.
Texto completoKim, Kyu-Won, Jae Kyung Roh, Hee-Jun Wee y Chan Kim. "Immunotherapeutic Anticancer Drugs and Other Miscellaneous Anticancer Drugs". En Cancer Drug Discovery, 135–53. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0844-7_7.
Texto completoKim, Kyu-Won, Jae Kyung Roh, Hee-Jun Wee y Chan Kim. "Alkylating Anticancer Drugs". En Cancer Drug Discovery, 71–94. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0844-7_4.
Texto completoKim, Kyu-Won, Jae Kyung Roh, Hee-Jun Wee y Chan Kim. "Antimetabolic Anticancer Drugs". En Cancer Drug Discovery, 95–112. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0844-7_5.
Texto completoActas de conferencias sobre el tema "Anticancer drugs"
Ma, Liang, Jeremy Barker, Changchun Zhou, Biaoyang Lin y Wei Li. "A Perfused Two-Chamber System for Anticancer Drug Screening". En ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34326.
Texto completoSchiestl, Robert H., Michael Davoren y Yelena Rivina. "Abstract 1793: Novel radiation mitigators and anticancer drugs". En Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1793.
Texto completoSettleman, Jeffrey E. "Abstract CN06-04: Reversible tolerance to anticancer drugs." En Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-cn06-04.
Texto completoSchiestl, Robert H., Yelena Rivina y Michael Davoren. "Abstract 3729: Novel radiation mitigators and anticancer drugs". En Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3729.
Texto completoZhukovets, T. A., M. А. Khancheuski, I. V. Koktysh, E. I. Kvasyuk y A. G. Sysa. "ANTIOXIDANT EFFECTS OF EMOXYPINE AS ADJUVANT OF ANTI-CANCER DRUGS". En SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2021. http://dx.doi.org/10.46646/sakh-2021-2-52-55.
Texto completoCao, Tingying, Xiangdong Gao y Yueqing Gu. "Biodegradable polylactide microspheres containing anticancer drugs used as injectable drug delivery system". En 2007 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iccme.2007.4381726.
Texto completoNikkhah, Mehdi, Jeannine S. Strobl y Masoud Agah. "Study the Effect of Anticancer Drugs on Human Breast Cancer Cells Using Three Dimensional Silicon Microstructures". En ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66680.
Texto completoJ., Alex Mathew y Nixon Raj N. "Insilico Docking Studies on Anticancer Drugs for Breast Cancer". En 2009 International Association of Computer Science and Information Technology - Spring Conference. IEEE, 2009. http://dx.doi.org/10.1109/iacsit-sc.2009.12.
Texto completoShrestha, Gajendra, Michael Xiao, Richard Robison, Larry L. St Clair y Kim O'Neill. "Abstract 3220: Lichen derived polyphenols as potential anticancer drugs". En Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3220.
Texto completoRibeiro, Tatiane. "23 Evidence-based medicine challenges in new anticancer drugs". En EBM Live Abstracts, July 2019, Oxford, UK. BMJ Publishing Group Ltd, 2019. http://dx.doi.org/10.1136/bmjebm-2019-ebmlive.104.
Texto completoInformes sobre el tema "Anticancer drugs"
Howard, David, Peter Bach, Ernst Berndt y Rena Conti. Pricing in the Market for Anticancer Drugs. Cambridge, MA: National Bureau of Economic Research, enero de 2015. http://dx.doi.org/10.3386/w20867.
Texto completoZhang, Jian-Ting. Molecular Study of Interactions between P-Glycoprotein and Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1995. http://dx.doi.org/10.21236/ada300162.
Texto completoBiswas, Kaustav y Samuel J. Danishefsky. Synthesis of Epothilone Analogs: Toward the Development of Potent Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2002. http://dx.doi.org/10.21236/ada409475.
Texto completoInoue, Takashi y Mamoru Narukawa. Anti-tumor efficacy of anti-PD-1/PD-L1 antibodies in combination with other anticancer drugs in solid tumors: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, octubre de 2022. http://dx.doi.org/10.37766/inplasy2022.10.0004.
Texto completoFeltmate, Colleen. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2007. http://dx.doi.org/10.21236/ada486569.
Texto completoFeltmate, Colleen. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2006. http://dx.doi.org/10.21236/ada481424.
Texto completoBeerman, Terry A. Discovery of DNA Binding Anticancer Drugs That Target Oncogenic Transcription Factors Associated With Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2001. http://dx.doi.org/10.21236/ada403322.
Texto completoVenedicto, Melissa y Cheng-Yu Lai. Facilitated Release of Doxorubicin from Biodegradable Mesoporous Silica Nanoparticles. Florida International University, octubre de 2021. http://dx.doi.org/10.25148/mmeurs.009774.
Texto completoMacedo, Luciana y Linda Malkas. The Human Breast Cancer DNA Synthesome Can Serve as a Novel In Vitro Model System for Studying the Mechanism of Action of Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, julio de 2000. http://dx.doi.org/10.21236/ada393926.
Texto completoJiang, Haiyan. The Human Breast Cancer Cell DNA Synthesome Can Serve as a Novel in Vitro Model System for Studying the Mechanism of Action of Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, julio de 1999. http://dx.doi.org/10.21236/ada384124.
Texto completo