Artículos de revistas sobre el tema "Animal model of hyperoxia"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Animal model of hyperoxia".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
D'Angio, Carl T. y Rita M. Ryan. "Animal models of bronchopulmonary dysplasia. The preterm and term rabbit models". American Journal of Physiology-Lung Cellular and Molecular Physiology 307, n.º 12 (15 de diciembre de 2014): L959—L969. http://dx.doi.org/10.1152/ajplung.00228.2014.
Texto completoMühlfeld, Christian, Henri Schulte, Johanna Christine Jansing, Costanza Casiraghi, Francesca Ricci, Chiara Catozzi, Matthias Ochs, Fabrizio Salomone y Christina Brandenberger. "Design-Based Stereology of the Lung in the Hyperoxic Preterm Rabbit Model of Bronchopulmonary Dysplasia". Oxidative Medicine and Cellular Longevity 2021 (6 de octubre de 2021): 1–12. http://dx.doi.org/10.1155/2021/4293279.
Texto completoDean, Jay B., Daniel K. Mulkey, Richard A. Henderson, Stephanie J. Potter y Robert W. Putnam. "Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons". Journal of Applied Physiology 96, n.º 2 (febrero de 2004): 784–91. http://dx.doi.org/10.1152/japplphysiol.00892.2003.
Texto completoGeorge, Caroline L. S., Giamila Fantuzzi, Stuart Bursten, Laura Leer y Edward Abraham. "Effects of lisofylline on hyperoxia-induced lung injury". American Journal of Physiology-Lung Cellular and Molecular Physiology 276, n.º 5 (1 de mayo de 1999): L776—L785. http://dx.doi.org/10.1152/ajplung.1999.276.5.l776.
Texto completoChen, Yin, Dong Wei, Jin Zhao, Xiangnan Xu y Jingyu Chen. "Reduction of hyperoxic acute lung injury in mice by Formononetin". PLOS ONE 16, n.º 1 (7 de enero de 2021): e0245050. http://dx.doi.org/10.1371/journal.pone.0245050.
Texto completoCheon, In Su, Youngmin Son y Jie Sun. "An animal model of enhanced disease development following respiratory viral infection in children with chronic lung diseases". Journal of Immunology 204, n.º 1_Supplement (1 de mayo de 2020): 93.10. http://dx.doi.org/10.4049/jimmunol.204.supp.93.10.
Texto completoMowes, Anja, Beatriz E. de Jongh, Timothy Cox, Yan Zhu y Thomas H. Shaffer. "A translational cellular model to study the impact of high-frequency oscillatory ventilation on human epithelial cell function". Journal of Applied Physiology 122, n.º 1 (1 de enero de 2017): 198–205. http://dx.doi.org/10.1152/japplphysiol.00400.2016.
Texto completoPorzionato, Andrea, Patrizia Zaramella, Arben Dedja, Diego Guidolin, Kelly Van Wemmel, Veronica Macchi, Marcin Jurga et al. "Intratracheal administration of clinical-grade mesenchymal stem cell-derived extracellular vesicles reduces lung injury in a rat model of bronchopulmonary dysplasia". American Journal of Physiology-Lung Cellular and Molecular Physiology 316, n.º 1 (1 de enero de 2019): L6—L19. http://dx.doi.org/10.1152/ajplung.00109.2018.
Texto completoBerger, Jessica y Vineet Bhandari. "Animal models of bronchopulmonary dysplasia. The term mouse models". American Journal of Physiology-Lung Cellular and Molecular Physiology 307, n.º 12 (15 de diciembre de 2014): L936—L947. http://dx.doi.org/10.1152/ajplung.00159.2014.
Texto completoDatta, Ankur, Gina A. Kim, Joann M. Taylor, Sylvia F. Gugino, Kathryn N. Farrow, Paul T. Schumacker y Sara K. Berkelhamer. "Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent". American Journal of Physiology-Lung Cellular and Molecular Physiology 309, n.º 4 (15 de agosto de 2015): L369—L377. http://dx.doi.org/10.1152/ajplung.00176.2014.
Texto completoSopi, Ramadan B., Musa A. Haxhiu, Richard J. Martin, Ismail A. Dreshaj, Suneel Kamath y Syed I. A. Zaidi. "Disruption of NO-cGMP signaling by neonatal hyperoxia impairs relaxation of lung parenchyma". American Journal of Physiology-Lung Cellular and Molecular Physiology 293, n.º 4 (octubre de 2007): L1029—L1036. http://dx.doi.org/10.1152/ajplung.00182.2007.
Texto completoBigdeli, Mohammad Reza. "Neuroprotection Caused by Hyperoxia Preconditioning in Animal Stroke Models". Scientific World JOURNAL 11 (2011): 403–21. http://dx.doi.org/10.1100/tsw.2011.23.
Texto completoDudley, R. "Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance." Journal of Experimental Biology 201, n.º 8 (1 de abril de 1998): 1043–50. http://dx.doi.org/10.1242/jeb.201.8.1043.
Texto completoTiboldi, Akos, Eva Hunyadi-Gulyas, Peter Wohlrab, Johannes A. Schmid, Klaus Markstaller, Klaus Ulrich Klein y Verena Tretter. "Effects of Hyperoxia and Hyperoxic Oscillations on the Proteome of Murine Lung Microvascular Endothelium". Antioxidants 11, n.º 12 (28 de noviembre de 2022): 2349. http://dx.doi.org/10.3390/antiox11122349.
Texto completoGoss, Kara N., Anthony R. Cucci, Amanda J. Fisher, Marjorie Albrecht, Andrea Frump, Roziya Tursunova, Yong Gao et al. "Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure". American Journal of Physiology-Lung Cellular and Molecular Physiology 308, n.º 8 (15 de abril de 2015): L797—L806. http://dx.doi.org/10.1152/ajplung.00276.2014.
Texto completoGarcía-Laorden, M. Isabel, Raquel Rodríguez-González, José L. Martín-Barrasa, Sonia García-Hernández, Ángela Ramos-Nuez, H. Celeste González-García, Jesús M. González-Martín, Robert M. Kacmarek y Jesús Villar. "Systemic Effects Induced by Hyperoxia in a Preclinical Model of Intra-abdominal Sepsis". Mediators of Inflammation 2020 (15 de octubre de 2020): 1–9. http://dx.doi.org/10.1155/2020/5101834.
Texto completoSpence, T. H., S. G. Jenkinson, K. H. Johnson, J. F. Collins y R. A. Lawrence. "Effects of bacterial endotoxin on protecting copper-deficient rats from hyperoxia". Journal of Applied Physiology 61, n.º 3 (1 de septiembre de 1986): 982–87. http://dx.doi.org/10.1152/jappl.1986.61.3.982.
Texto completoMorton, Ronald L., David Iklé y Carl W. White. "Loss of lung mitochondrial aconitase activity due to hyperoxia in bronchopulmonary dysplasia in primates". American Journal of Physiology-Lung Cellular and Molecular Physiology 274, n.º 1 (1 de enero de 1998): L127—L133. http://dx.doi.org/10.1152/ajplung.1998.274.1.l127.
Texto completoVogel, Elizabeth R., Logan J. Manlove, Ine Kuipers, Michael A. Thompson, Yun-Hua Fang, Michelle R. Freeman, Rodney D. Britt et al. "Caveolin-1 scaffolding domain peptide prevents hyperoxia-induced airway remodeling in a neonatal mouse model". American Journal of Physiology-Lung Cellular and Molecular Physiology 317, n.º 1 (1 de julio de 2019): L99—L108. http://dx.doi.org/10.1152/ajplung.00111.2018.
Texto completoPattappa, Girish, Jonas Krueckel, Ruth Schewior, Dustin Franke, Alexander Mench, Matthias Koch, Johannes Weber et al. "Physioxia Expanded Bone Marrow Derived Mesenchymal Stem Cells Have Improved Cartilage Repair in an Early Osteoarthritic Focal Defect Model". Biology 9, n.º 8 (17 de agosto de 2020): 230. http://dx.doi.org/10.3390/biology9080230.
Texto completoLoi, Barbara, Costanza Casiraghi, Chiara Catozzi, Matteo Storti, Monica Lucattelli, Barbara Bartalesi, Nadya Yousef, Fabrizio Salomone y Daniele De Luca. "Lung ultrasound features and relationships with respiratory mechanics of evolving BPD in preterm rabbits and human neonates". Journal of Applied Physiology 131, n.º 3 (1 de septiembre de 2021): 895–904. http://dx.doi.org/10.1152/japplphysiol.00300.2021.
Texto completoMasood, Azhar, Man Yi, Mandy Lau, Rosetta Belcastro, Samuel Shek, Jingyi Pan, Crystal Kantores et al. "Therapeutic effects of hypercapnia on chronic lung injury and vascular remodeling in neonatal rats". American Journal of Physiology-Lung Cellular and Molecular Physiology 297, n.º 5 (noviembre de 2009): L920—L930. http://dx.doi.org/10.1152/ajplung.00139.2009.
Texto completoFujii, Yutaka. "Evaluation of Inflammation Caused by Cardiopulmonary Bypass in a Small Animal Model". Biology 9, n.º 4 (20 de abril de 2020): 81. http://dx.doi.org/10.3390/biology9040081.
Texto completoHainis, K. D., J. I. Sznajder y D. E. Schraufnagel. "Lung lymphatics cast from the airspace". American Journal of Physiology-Lung Cellular and Molecular Physiology 267, n.º 2 (1 de agosto de 1994): L199—L205. http://dx.doi.org/10.1152/ajplung.1994.267.2.l199.
Texto completoFracica, P. J., S. P. Caminiti, C. A. Piantadosi, F. G. Duhaylongsod, J. D. Crapo y S. L. Young. "Natural surfactant and hyperoxic lung injury in primates. II. Morphometric analyses". Journal of Applied Physiology 76, n.º 3 (1 de marzo de 1994): 1002–10. http://dx.doi.org/10.1152/jappl.1994.76.3.1002.
Texto completoZhang, Duo, Heedoo Lee, Yong Cao, Charles S. Dela Cruz y Yang Jin. "miR-185 mediates lung epithelial cell death after oxidative stress". American Journal of Physiology-Lung Cellular and Molecular Physiology 310, n.º 7 (1 de abril de 2016): L700—L710. http://dx.doi.org/10.1152/ajplung.00392.2015.
Texto completoSimonson, Steven G., Karen E. Welty-Wolf, Yuh-Chin T. Huang, David E. Taylor, Stephen P. Kantrow, Martha S. Carraway, James D. Crapo y Claude A. Piantadosi. "Aerosolized manganese SOD decreases hyperoxic pulmonary injury in primates. I. Physiology and biochemistry". Journal of Applied Physiology 83, n.º 2 (1 de agosto de 1997): 550–58. http://dx.doi.org/10.1152/jappl.1997.83.2.550.
Texto completoLingappan, Krithika, Weiwu Jiang, Lihua Wang y Bhagavatula Moorthy. "Sex-specific differences in neonatal hyperoxic lung injury". American Journal of Physiology-Lung Cellular and Molecular Physiology 311, n.º 2 (1 de agosto de 2016): L481—L493. http://dx.doi.org/10.1152/ajplung.00047.2016.
Texto completoShrestha, Amrit Kumar, Renuka T. Menon, Ahmed El-Saie, Roberto Barrios, Corey Reynolds y Binoy Shivanna. "Interactive and independent effects of early lipopolysaccharide and hyperoxia exposure on developing murine lungs". American Journal of Physiology-Lung Cellular and Molecular Physiology 319, n.º 6 (1 de diciembre de 2020): L981—L996. http://dx.doi.org/10.1152/ajplung.00013.2020.
Texto completoPorzionato, Andrea, Patrizia Zaramella, Arben Dedja, Diego Guidolin, Luca Bonadies, Veronica Macchi, Michela Pozzobon et al. "Intratracheal administration of mesenchymal stem cell-derived extracellular vesicles reduces lung injuries in a chronic rat model of bronchopulmonary dysplasia". American Journal of Physiology-Lung Cellular and Molecular Physiology 320, n.º 5 (1 de mayo de 2021): L688—L704. http://dx.doi.org/10.1152/ajplung.00148.2020.
Texto completoLozon, Tricia I., Alison J. Eastman, Gustavo Matute-Bello, Peter Chen, Teal S. Hallstrand y William A. Altemeier. "PKR-dependent CHOP induction limits hyperoxia-induced lung injury". American Journal of Physiology-Lung Cellular and Molecular Physiology 300, n.º 3 (marzo de 2011): L422—L429. http://dx.doi.org/10.1152/ajplung.00166.2010.
Texto completoNunes, Irene, Rosemary D. Higgins, Lucia Zanetta, Peter Shamamian y Stephen P. Goff. "C-Abl Is Required for the Development of Hyperoxia-Induced Retinopathy". Journal of Experimental Medicine 193, n.º 12 (18 de junio de 2001): 1383–92. http://dx.doi.org/10.1084/jem.193.12.1383.
Texto completoMa. "Effects of Hyperoxia on Brain Tissue Oxygen Tension in Non-Sedated, Non- Anesthetized Arctic Ground Squirrels: An Animal Model of Hyperoxic Stress". American Journal of Animal and Veterinary Sciences 6, n.º 1 (1 de enero de 2011): 7–17. http://dx.doi.org/10.3844/ajavsp.2011.7.17.
Texto completoRodríguez-González, Raquel, José Luis Martín-Barrasa, Ángela Ramos-Nuez, Ana María Cañas-Pedrosa, María Teresa Martínez-Saavedra, Miguel Ángel García-Bello, Josefina López-Aguilar et al. "Multiple System Organ Response Induced by Hyperoxia in a Clinically Relevant Animal Model of Sepsis". Shock 42, n.º 2 (agosto de 2014): 148–53. http://dx.doi.org/10.1097/shk.0000000000000189.
Texto completoSalaets, Thomas, André Gie, Julio Jimenez, Margo Aertgeerts, Olivier Gheysens, Greetje Vande Velde, Michel Koole et al. "Local pulmonary drug delivery in the preterm rabbit: feasibility and efficacy of daily intratracheal injections". American Journal of Physiology-Lung Cellular and Molecular Physiology 316, n.º 4 (1 de abril de 2019): L589—L597. http://dx.doi.org/10.1152/ajplung.00255.2018.
Texto completoRistescu, Anca Irina, Crina Elena Tiron, Adrian Tiron y Ioana Grigoras. "Exploring Hyperoxia Effects in Cancer—From Perioperative Clinical Data to Potential Molecular Mechanisms". Biomedicines 9, n.º 9 (13 de septiembre de 2021): 1213. http://dx.doi.org/10.3390/biomedicines9091213.
Texto completoOzawa, Junichi, Kosuke Tanaka, Yukio Arai, Mitsuhiro Haga, Naoyuki Miyahara, Ai Miyamoto, Eri Nishimura y Fumihiko Namba. "Thioredoxin-1 Ameliorates Oxygen-Induced Retinopathy in Newborn Mice Through Modulation of Proinflammatory and Angiogenic Factors". Antioxidants 11, n.º 5 (30 de abril de 2022): 899. http://dx.doi.org/10.3390/antiox11050899.
Texto completoGelfand, Craig A., Reiko Sakurai, Ying Wang, Yitian Liu, Robert Segal y Virender K. Rehan. "Inhaled vitamin A is more effective than intramuscular dosing in mitigating hyperoxia-induced lung injury in a neonatal rat model of bronchopulmonary dysplasia". American Journal of Physiology-Lung Cellular and Molecular Physiology 319, n.º 3 (1 de septiembre de 2020): L576—L584. http://dx.doi.org/10.1152/ajplung.00266.2020.
Texto completoMižíková, Ivana, Jordi Ruiz-Camp, Heiko Steenbock, Alicia Madurga, István Vadász, Susanne Herold, Konstantin Mayer, Werner Seeger, Jürgen Brinckmann y Rory E. Morty. "Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia". American Journal of Physiology-Lung Cellular and Molecular Physiology 308, n.º 11 (1 de junio de 2015): L1145—L1158. http://dx.doi.org/10.1152/ajplung.00039.2015.
Texto completoDomm, William, Min Yee, Ravi S. Misra, Robert Gelein, Aitor Nogales, Luis Martinez-Sobrido y Michael A. O’Reilly. "Oxygen-dependent changes in lung development do not affect epithelial infection with influenza A virus". American Journal of Physiology-Lung Cellular and Molecular Physiology 313, n.º 5 (1 de noviembre de 2017): L940—L949. http://dx.doi.org/10.1152/ajplung.00203.2017.
Texto completoBranch, Craig A., Min-Hui Cui, Nicholas Branch y Seetharama Acharya. "Cerebral Perfusion Patterns in Transgenic Murine Models of Sickle Cell Disease As Seen By MRI Is Reflective of Their Anemia Profile and Parallels the Human Disease". Blood 126, n.º 23 (3 de diciembre de 2015): 968. http://dx.doi.org/10.1182/blood.v126.23.968.968.
Texto completoMonteiro Rodrigues, Luis, Henrique Nazaré Silva, Hugo Ferreira y Alain-Pierre Gadeau. "Characterizing Vascular Dysfunction in Genetically Modified Mice through the Hyperoxia Model". International Journal of Molecular Sciences 20, n.º 9 (2 de mayo de 2019): 2178. http://dx.doi.org/10.3390/ijms20092178.
Texto completoLejeune, P., J. L. Vachiery, J. M. De Smet, M. Leeman, S. Brimioulle, M. Delcroix, C. Melot y R. Naeije. "PEEP inhibits hypoxic pulmonary vasoconstriction in dogs". Journal of Applied Physiology 70, n.º 4 (1 de abril de 1991): 1867–73. http://dx.doi.org/10.1152/jappl.1991.70.4.1867.
Texto completoChen, Chung-Ming, Hsiu-Chu Chou, Yu-Chen S. H. Yang, Emily Chia-Yu Su y Yun-Ru Liu. "Predicting Hyperoxia-Induced Lung Injury from Associated Intestinal and Lung Dysbiosis in Neonatal Mice". Neonatology 118, n.º 2 (2021): 163–73. http://dx.doi.org/10.1159/000513553.
Texto completoHall, Aaron A., Colin Young, Michael Bodo y Richard T. Mahon. "Vigabatrin prevents seizure in swine subjected to hyperbaric hyperoxia". Journal of Applied Physiology 115, n.º 6 (15 de septiembre de 2013): 861–67. http://dx.doi.org/10.1152/japplphysiol.00221.2013.
Texto completoGie, Andre G., Yannick Regin, Thomas Salaets, Costanza Casiraghi, Fabrizio Salomone, Jan Deprest, Jeroen Vanoirbeek y Jaan Toelen. "Intratracheal budesonide/surfactant attenuates hyperoxia-induced lung injury in preterm rabbits". American Journal of Physiology-Lung Cellular and Molecular Physiology 319, n.º 6 (1 de diciembre de 2020): L949—L956. http://dx.doi.org/10.1152/ajplung.00162.2020.
Texto completoZhang, Liang, Li-Jie Yuan, Shuang Zhao, Yu Shan, Hong-Min Wu y Xin-Dong Xue. "The role of placenta growth factor in the hyperoxia-induced acute lung injury in an animal model". Cell Biochemistry and Function 33, n.º 1 (16 de diciembre de 2014): 44–49. http://dx.doi.org/10.1002/cbf.3085.
Texto completoOlave, Nelida, Charitharth Vivek Lal, Brian Halloran, Vineet Bhandari y Namasivayam Ambalavanan. "Iloprost attenuates hyperoxia-mediated impairment of lung development in newborn mice". American Journal of Physiology-Lung Cellular and Molecular Physiology 315, n.º 4 (1 de octubre de 2018): L535—L544. http://dx.doi.org/10.1152/ajplung.00125.2017.
Texto completoFerrari, Michele, Isha H. Jain, Olga Goldberger, Emanuele Rezoagli, Robrecht Thoonen, Kai-Hung Cheng, David E. Sosnovik, Marielle Scherrer-Crosbie, Vamsi K. Mootha y Warren M. Zapol. "Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome". Proceedings of the National Academy of Sciences 114, n.º 21 (8 de mayo de 2017): E4241—E4250. http://dx.doi.org/10.1073/pnas.1621511114.
Texto completoWood, Thomas, Daniel Moralejo, Kylie Corry, Jessica M. Snyder, Christopher Traudt, Chad Curtis, Elizabeth Nance, Pratik Parikh y Sandra E. Juul. "A Ferret Model of Encephalopathy of Prematurity". Developmental Neuroscience 40, n.º 5-6 (2018): 475–89. http://dx.doi.org/10.1159/000498968.
Texto completo