Literatura académica sobre el tema "Animal model of hyperoxia"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Animal model of hyperoxia".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Animal model of hyperoxia"
D'Angio, Carl T. y Rita M. Ryan. "Animal models of bronchopulmonary dysplasia. The preterm and term rabbit models". American Journal of Physiology-Lung Cellular and Molecular Physiology 307, n.º 12 (15 de diciembre de 2014): L959—L969. http://dx.doi.org/10.1152/ajplung.00228.2014.
Texto completoMühlfeld, Christian, Henri Schulte, Johanna Christine Jansing, Costanza Casiraghi, Francesca Ricci, Chiara Catozzi, Matthias Ochs, Fabrizio Salomone y Christina Brandenberger. "Design-Based Stereology of the Lung in the Hyperoxic Preterm Rabbit Model of Bronchopulmonary Dysplasia". Oxidative Medicine and Cellular Longevity 2021 (6 de octubre de 2021): 1–12. http://dx.doi.org/10.1155/2021/4293279.
Texto completoDean, Jay B., Daniel K. Mulkey, Richard A. Henderson, Stephanie J. Potter y Robert W. Putnam. "Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons". Journal of Applied Physiology 96, n.º 2 (febrero de 2004): 784–91. http://dx.doi.org/10.1152/japplphysiol.00892.2003.
Texto completoGeorge, Caroline L. S., Giamila Fantuzzi, Stuart Bursten, Laura Leer y Edward Abraham. "Effects of lisofylline on hyperoxia-induced lung injury". American Journal of Physiology-Lung Cellular and Molecular Physiology 276, n.º 5 (1 de mayo de 1999): L776—L785. http://dx.doi.org/10.1152/ajplung.1999.276.5.l776.
Texto completoChen, Yin, Dong Wei, Jin Zhao, Xiangnan Xu y Jingyu Chen. "Reduction of hyperoxic acute lung injury in mice by Formononetin". PLOS ONE 16, n.º 1 (7 de enero de 2021): e0245050. http://dx.doi.org/10.1371/journal.pone.0245050.
Texto completoCheon, In Su, Youngmin Son y Jie Sun. "An animal model of enhanced disease development following respiratory viral infection in children with chronic lung diseases". Journal of Immunology 204, n.º 1_Supplement (1 de mayo de 2020): 93.10. http://dx.doi.org/10.4049/jimmunol.204.supp.93.10.
Texto completoMowes, Anja, Beatriz E. de Jongh, Timothy Cox, Yan Zhu y Thomas H. Shaffer. "A translational cellular model to study the impact of high-frequency oscillatory ventilation on human epithelial cell function". Journal of Applied Physiology 122, n.º 1 (1 de enero de 2017): 198–205. http://dx.doi.org/10.1152/japplphysiol.00400.2016.
Texto completoPorzionato, Andrea, Patrizia Zaramella, Arben Dedja, Diego Guidolin, Kelly Van Wemmel, Veronica Macchi, Marcin Jurga et al. "Intratracheal administration of clinical-grade mesenchymal stem cell-derived extracellular vesicles reduces lung injury in a rat model of bronchopulmonary dysplasia". American Journal of Physiology-Lung Cellular and Molecular Physiology 316, n.º 1 (1 de enero de 2019): L6—L19. http://dx.doi.org/10.1152/ajplung.00109.2018.
Texto completoBerger, Jessica y Vineet Bhandari. "Animal models of bronchopulmonary dysplasia. The term mouse models". American Journal of Physiology-Lung Cellular and Molecular Physiology 307, n.º 12 (15 de diciembre de 2014): L936—L947. http://dx.doi.org/10.1152/ajplung.00159.2014.
Texto completoDatta, Ankur, Gina A. Kim, Joann M. Taylor, Sylvia F. Gugino, Kathryn N. Farrow, Paul T. Schumacker y Sara K. Berkelhamer. "Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent". American Journal of Physiology-Lung Cellular and Molecular Physiology 309, n.º 4 (15 de agosto de 2015): L369—L377. http://dx.doi.org/10.1152/ajplung.00176.2014.
Texto completoTesis sobre el tema "Animal model of hyperoxia"
Dedja, Arben. "Administration of L-citrulline in an animal model of perinatal lung damage". Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422175.
Texto completoLa corioamnionite indotta dalla somministrazione intrauterina dell’endotossina LPS e da una moderata iperossia nei primi giorni di vita causano uno squilibrio alveolare e vascolare del polmone nel ratto neonato. L’ossido nitrico (NO) endogeno, che promuove la crescita polmonare, viene prodotto nelle cellule endoteliali dal metabolismo del L-arginina verso il suo prodotto, la L-citrullina. Abbiamo studiato l’efficacia della somministrazione di L-citrullina in un modello di danno indotto da corioamnionite e/o da iperossia nei ratti neonati nell’attenuare il danno polmonare intervenendo sulla sintesi del NO endogeno aumentando i livelli di L-arginina. Materiali e Metodi. I ratti neonati (che ricevono o no LPS nella loro fase intrauterina) vengono esposti a un FiO2=0.6, o ad aria ambiente, per 14 giorni dopo la nascita con la somministrazione, per alcuni di loro, della L-citrullina. A vari time-points sperimentali siero e tessuto polmonare vengono raccolti per ulteriori analisi. Le sezioni polmonari vengono colorate con ematossilina & eosina e fotografate a 10X. Per una valutazione della densità vascolare le sezioni sono colorate per la presenza dell’antigene del Fattore di von Willebrand. La VEGF e l’espressione proteica eNOS vengono esaminati con il Western blot. La HPLC Spettrometria di Massa viene usata per determinare e quantificare nel siero ADMA, SDMA, L-arginina, L-citrullina, NMMA e omo-arginina. Risultati. L’esposizione a moderati regimi di iperossia era associata istologicamente con aree estese di tipo enfisematoso, simile al quadro del gruppo esposto al LPS e, inoltre, con un arresto dell’alveolarizzazione e contestuale variazione eterogenea della morfologia polmonare, e ha indotto un cambiamento nella morfometria polmonare con aree irregolari di inspessimento parenchimatoso intervallate da aree con spazi aumentati. Il gruppo ricevente il farmaco presentava un grado di alveolarizzazione più sviluppata con un incremento del numero degli alveoli per mm2, statisticamente significativo rispetto al gruppo con iperossia. Le sezioni polmonari dei gruppi CITR+iperossia e LPS+CITR contenevano spazi più piccoli e più numerosi, simili ai controlli. Il numero delle creste secondarie era più alto nei controlli e nei gruppi CITR+iperossia e LPS+CITR, che nei gruppi con iperossia solo, o LPS sola. L’espressione genica del VEGF era più bassa nel gruppo dell’iperossia, rispetto al gruppo CITR+iperossia, o ai controlli. Inoltre, le sezioni polmonari da animali di controllo o da trattati con CITR+iperossia presentavano un’espressione vWF simile, mentre la colorazione era più bassa nel gruppo con iperossia. Nei campioni da animali trattati con CITR+iperossia era evidente anche un organizzazione migliore della rete vascolare rispetto agli animali esposti solo all’iperossia. La quantità delle proteine eNOS normalizzate nei tessuti polmonari da animali trattati con L-citrullina era più alta che nei tessuti del gruppo con sola iperossia. La valutazione con spettrometria di massa dei campioni di siero non ha mostrato grandi differenze tra i gruppi trattati. Conclusioni. In conclusione abbiamo provato che: (i) la somministrazione della L-citrullina aiuta la crescita alveolare nel danno polmonare da ossigeno, o da esposizione antenatale a endotossina; (ii) il gene e la proteina VEGF sono over-espressi nel gruppo trattato con L-citrullina. Ulteriori effetti protettivi potranno essere manifesti sul network alveolare e vascolare del polmone e, di conseguenza, sulla maturazione della matrice nel nostro modello di danno polmonare; tutto questo potrà essere promettente in vista di una strategia della prevenzione della broncodisplasia polmonare.
Gamboa, Teresa Paula Rocha Soeiro Tavares. "Repercussões crónicas nas vias aéreas da hiperóxia neonatal : modelo experimental". Doctoral thesis, Faculdade de Ciências Médicas. Universidade Nova de Lisboa, 2007. http://hdl.handle.net/10362/5516.
Texto completoPilley, Elizabeth Sarah. "Effects of antenatal inflammation and postnatal oxygen fluctuation on developing white matter in a rodent model of prematurity". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/23619.
Texto completoSmit, Elisa. "Effects of hyperoxia and therapeutic hypothermia in an immature rat model of neonatal hypoxicischaemic brain damage". Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685357.
Texto completoBrännström, Åke. "Modelling animal populations". Doctoral thesis, Umeå universitet, Matematik och matematisk statistik, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-205.
Texto completoCamus, Sandrine. "Etho-Psychiatry : animal model to model animal : Identification of a « spontaneous » non-human primate model of depressive symptoms". Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22032/document.
Texto completoMore than 150 million people worldwide suffer from major depressive disorder (MDD). Although investigations of its pathophysiology have dramatically increased in the last decade, no substantial improvement has been made concerning the treatments and the understanding of its underlying mechanisms. A genetic predisposition and stressful experiences have been acknowledged as risk factors involved in MDD. However, no specific genes have been identified so far and little is known about the gene x environment interactions. This is likely due to the lack of bona fide animal models of depressive-like symptoms. Indeed, there is a huge gap between the knowledge / diagnostic methodology of clinical research and the animal models used in fundamental research, mainly focusing on environmental, pharmacological, lesional or genetic manipulations. Phylogenetically and behaviourally closer to Humans compared to rodents, non-human primates (NHPs) can show spontaneous behavioural and physiological modifications in response to stressful life events. Although promising results had been reported in the 1960’s by the pioneering studies of Harlow and colleagues, the investigation of depressive-like symptoms in macaques are scarce in the current literature. We hypothesize that, among large captive NHP populations, a few individuals will display atypical behaviours that could mimic depressive symptoms. Combining the skills and knowledge of ethology, psychiatry and neurosciences, my PhD project aimed at proposing an innovative non-invasive detection method of such depressive-like profiles. The impact of birth origin and species was questioned as well. Behaviours, body postures, body orientations, spatial location, gaze direction and/or inter-peer distances were collected among more than 200 rhesus and cynomolgus captive- or wild-born farm-bred macaques. Using multifactorial analyses, clusters of individuals displaying distinct behavioural profiles were identified. In each population, a common depressive-like profile was characterised by its similarities with symptoms described in the Diagnostic and Statistical Manual of Mental Disorder and with other animal models of depression. The prevalence of such profiles was increased in the rhesus populations and by captive early life experience, corroborating the role of stress in the development of MDD. In addition to expressing depressive-like features in their home cage, these animals displayed higher levels of plasmatic cortisol and cerebrospinal noradrenaline which correlated with a passive emotional reactivity in 2 behavioural paradigms. Altogether these promising results conferred good face validity to our NHP model of depressive-like symptoms. Further characterization of this model is required and might bring new insights to the understanding of MDD pathophysiology and etiology
Cullen, J. R. "Sudden hearing loss : an animal model". Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326426.
Texto completoDevor, Devin Patrick. "Effects of Hyperoxia on Thermal Tolerance and Indicators of Hypoxic Stress in Antarctic Fishes That Differ in Expression of Oxygen-Binding Proteins". Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1362666619.
Texto completoStewart, Richard James. "Aspects of unilateral cryptorchidism : an animal model". Thesis, Queen's University Belfast, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336195.
Texto completoGodinho, Sofia Isabel Henriques. "An animal model of acute lung injury". Thesis, University of Bristol, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424508.
Texto completoLibros sobre el tema "Animal model of hyperoxia"
United States. Dept. of Agriculture. Economic Research Service, ed. North American trade model for animal products. Washington, D.C: U.S. Dept. of Agriculture, Economic Research Service, 1993.
Buscar texto completoChr, Stenseth Nils y Lidicker William Zander 1932-, eds. Animal dispersal: Small mammals as a model. London: Chapman & Hall, 1992.
Buscar texto completoJory, Brian. The AniCare model of treatment for animal abuse. Washington Grove, Md: Doris Day Animal Foundation and Psychologists for the Ethical Treatment of Animals, 2000.
Buscar texto completo1962-, Dugatkin Lee Alan, ed. Model systems in behavioral ecology: Integrating conceptual, theoretical, and empirical approaches. Princeton, N.J: Princeton University Press, 2001.
Buscar texto completoLuján, Hugo D. Giardia: A Model Organism. Vienna: Springer-Verlag Vienna, 2011.
Buscar texto completoImperial Cancer Research Fund (Great Britain). Naturally entering tumours in animals as a model for human disease. Editado por Onions David E y Jarrett O. (Oswald). Oxford, U.K: Published for the Imperial Cancer Research Fund by Oxford University Press, 1987.
Buscar texto completoI, Selverston Allen, ed. Model neural networks and behavior. New York: Plenum Press, 1985.
Buscar texto completoErwin, Wagner y Theuring F, eds. Transgenic animals as model systems for human diseases. Berlin: Springer-Verlag, 1993.
Buscar texto completoMueller, Werner A., Monika Hassel y Maura Grealy. Development and Reproduction in Humans and Animal Model Species. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-43784-1.
Texto completoBernard, Thierry, Mewa Singh y Kaumanns Werner, eds. Macaque societies: A model for the study of social organization. Cambridge, UK: Cambridge University Press, 2004.
Buscar texto completoCapítulos de libros sobre el tema "Animal model of hyperoxia"
Scherrmann, Jean-Michel, Kim Wolff, Christine A. Franco, Marc N. Potenza, Tayfun Uzbay, Lisiane Bizarro, David C. S. Roberts et al. "Animal Model". En Encyclopedia of Psychopharmacology, 84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_522.
Texto completoNishisaka, Nobuyasu, Philo Morse, Richard F. Jones, Ching Y. Wang y Gabriel P. Haas. "Murine Animal Model". En Renal Cancer, 255–64. Totowa, NJ: Humana Press, 2001. http://dx.doi.org/10.1385/1-59259-144-2:255.
Texto completoKim, Seong-Gi, Tao Jin, Tae Kim, Alberto Vazquez y Mitsuhiro Fukuda. "Animal Model Studies". En fMRI: From Nuclear Spins to Brain Functions, 633–57. Boston, MA: Springer US, 2015. http://dx.doi.org/10.1007/978-1-4899-7591-1_22.
Texto completoBansal, Puneet Kumar, Shamsher Singh y Sumit Jamwal. "Animal Model of Anxiety". En Animal Models of Neurological Disorders, 139–58. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5981-0_10.
Texto completoLogan, Patrick T. "Animal Model Imaging Techniques". En Experimental and Clinical Metastasis, 237–47. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3685-0_18.
Texto completoHubel, Tatjana Y. y Cameron Tropea. "Experimental investigation of a flapping wing model". En Animal Locomotion, 383–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11633-9_30.
Texto completoNiewiesk, S. "Current Animal Models: Cotton Rat Animal Model". En Current Topics in Microbiology and Immunology, 89–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70617-5_5.
Texto completoDeppe, Sahar, Björn Frahm, Volker C. Hass, Tanja Hernández Rodríguez, Kim B. Kuchemüller, Johannes Möller y Ralf Pörtner. "Estimation of Process Model Parameters". En Animal Cell Biotechnology, 213–34. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0191-4_12.
Texto completoMagnani, Lorenzo. "Animal Abduction". En Model-Based Reasoning in Science, Technology, and Medicine, 3–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71986-1_1.
Texto completoBlasco, Agustín. "Model Selection". En Bayesian Data Analysis for Animal Scientists, 213–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54274-4_10.
Texto completoActas de conferencias sobre el tema "Animal model of hyperoxia"
Wong, S. T., J. G. Sivak, A. K. Bal, M. G. Callender y A. J. Bakelaar. "Changes in Amacrine Cell Numbers and Morphology in Response To Induced Myopia and Hyperopia". En Vision Science and its Applications. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/vsia.1998.suc.2.
Texto completoHusari, AW, G. Dbaibo, A. Khayyat, G. Zaatari, M. Sabban y S. Mroueh. "The Possible Role of Pomegranate Juice as an Antioxidant in Attenuating Acute Lung Injury and Apoptosis in a Hyperoxic Animal Model." En American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5640.
Texto completoShao, Guangbin, Longqiu Li, Hongtao Zhang, Xinrong Zhou, Tingting Li y Hualei Dong. "Experimental and Numerical Investigation of Vision Impairment in Long-Term Exposure to Microgravity". En ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59433.
Texto completoSchaeffel, Frank. "Emmetropization in chick eyes: optimizing refractive state by visual feedback control". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tuy2.
Texto completoNardiello, Claudio, Ivana Mizíková, Jordi Ruiz-Camp, Werner Seeger y Rory Morty. "Refinement of the hyperoxia-based experimental mouse model of bronchopulmonary dysplasia". En ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa4027.
Texto completoRobinson, Shmulewitz y Burke. "Waveform aberrations in an animal model". En Proceedings of IEEE Ultrasonics Symposium ULTSYM-94. IEEE, 1994. http://dx.doi.org/10.1109/ultsym.1994.401901.
Texto completoIwakura, Y. "SP0003 Novel animal model in arthritis". En Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.7154.
Texto completoSchiliro, M., B. Roos, L. L. Nesbitt, S. A. Wicher, B. S. Patel, Y. S. Prakash y C. M. Pabelick. "Hydrogen Sulfide and Airway Hyperreactivity in a Mouse Model of Neonatal Hyperoxia Exposure". En American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4625.
Texto completoBastarache, J. A., K. Smith, J. J. Jesse, N. D. Putz, J. E. Meegan, A. M. Bogart, K. Schaaf, S. Ghosh, C. M. Shaver y L. B. Ware. "A Two-Hit Model of Sepsis Plus Hyperoxia Causes Lung Permeability and Inflammation". En American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a4900.
Texto completoGadomski, B. C., K. C. McGilvray, J. T. Easley, R. H. Palmer y C. M. Puttlitz. "Simulating Microgravity in a Large Animal Model". En ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14215.
Texto completoInformes sobre el tema "Animal model of hyperoxia"
Farmer, Roger E. A. y Konstantin Platonov. Animal Spirits in a Monetary Model. Cambridge, MA: National Bureau of Economic Research, marzo de 2016. http://dx.doi.org/10.3386/w22136.
Texto completoLi, Jiliang. Healing of Stress Fracture in an Animal Model. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2004. http://dx.doi.org/10.21236/ada433113.
Texto completoGavin, Patrick. BNCT - Large animal model studies utilizing epithermal neutrons. Office of Scientific and Technical Information (OSTI), marzo de 1998. http://dx.doi.org/10.2172/761739.
Texto completoAragie, Emerta, Seneshaw Tamiru Beyene, Ermias Legesse y James Thurlow. Linked Economic and Animal Systems (LEAS) Model: Technical documentation. Washington, DC: International Food Policy Research Institute, 2021. http://dx.doi.org/10.2499/p15738coll2.134330.
Texto completoGoetz, Jessica E. A Clinically Realistic Large Animal Model of Intra-Articular Fracture. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2014. http://dx.doi.org/10.21236/ada612770.
Texto completoKeithly, Janet S. Testing Experimental Compounds against Leishmaniasis in Laboratory Animal Model Systems. Fort Belvoir, VA: Defense Technical Information Center, abril de 1988. http://dx.doi.org/10.21236/ada196657.
Texto completoDevine, Darragh. Self-Injurious Behavior: An Animal Model of an Autism Endophenotype. Fort Belvoir, VA: Defense Technical Information Center, enero de 2012. http://dx.doi.org/10.21236/ada562420.
Texto completoTochigi, Yuki. A Clinically Realistic Large Animal Model of Intra-Articular Fracture. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2012. http://dx.doi.org/10.21236/ada570059.
Texto completoGoetz, Jessica E. A Clinically Realistic Large Animal Model of Intra-Articular Fracture. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada591969.
Texto completoShinn, Antoinette M. PET-CT Animal Model for Surveillance of Embedded Metal Fragments. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2012. http://dx.doi.org/10.21236/ada618102.
Texto completo