Literatura académica sobre el tema "Analysis of natural materials"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Analysis of natural materials".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Analysis of natural materials"
Ramakrishna, Ganga, P. Kiran babu, K. Purushothaman, E. R. Sivakumar y M. Sreenivasan. "An analysis on natural fiber composite materials". Materials Today: Proceedings 45 (2021): 6794–99. http://dx.doi.org/10.1016/j.matpr.2020.12.767.
Texto completoVandenabeele, Peter, Mayahuel Ortega-Avilès, Dolores Tenorio Castilleros y Luc Moens. "Raman spectroscopic analysis of Mexican natural artists’ materials". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 68, n.º 4 (diciembre de 2007): 1085–88. http://dx.doi.org/10.1016/j.saa.2007.01.031.
Texto completoBashorov, Musa, Georgiy Kozlov, Gennady Zaikov y Abdulakh Mikitaev. "Polymers as Natural Nanocomposites. 2. The Comparative Analysis of Reinforcement Mechanisms". Chemistry & Chemical Technology 3, n.º 3 (15 de septiembre de 2009): 183–85. http://dx.doi.org/10.23939/chcht03.03.183.
Texto completoGualtieri, A. F., A. Viani, G. Banchio y Gilberto Artioli. "Quantitative Phase Analysis of Natural Raw Materials Containing Montmorillonite". Materials Science Forum 378-381 (octubre de 2001): 702–9. http://dx.doi.org/10.4028/www.scientific.net/msf.378-381.702.
Texto completoLoukidis, Andronikos, Ermioni D. Pasiou, Nicholas V. Sarlis y Dimos Triantis. "Fracture analysis of typical construction materials in natural time". Physica A: Statistical Mechanics and its Applications 547 (junio de 2020): 123831. http://dx.doi.org/10.1016/j.physa.2019.123831.
Texto completoOliveira, Leandro S., Mauri Fortes y Kamyar Haghighi. "CONJUGATE ANALYSIS OF NATURAL CONVECTIVE DRYING OF BIOLOGICAL MATERIALS". Drying Technology 12, n.º 5 (enero de 1994): 1167–90. http://dx.doi.org/10.1080/07373939408960994.
Texto completoJ, Okerio. "Comparative DMA Analysis of a Natural Based Potential Adhesive Extracts from Caesalipinia Decapelata". Physical Science & Biophysics Journal 6, n.º 2 (5 de julio de 2022): 1–3. http://dx.doi.org/10.23880/psbj-16000214.
Texto completoMorante-Carballo, Fernando, Néstor Montalván-Burbano, Paúl Carrión-Mero y Kelly Jácome-Francis. "Worldwide Research Analysis on Natural Zeolites as Environmental Remediation Materials". Sustainability 13, n.º 11 (4 de junio de 2021): 6378. http://dx.doi.org/10.3390/su13116378.
Texto completoLakshmanan, D., R. Naveen, P. Saravanan, D. Nivitha y R. R. Mathi Vathana. "Experimental Analysis on Water Absorption Behaviour of Natural Composite Materials". IOP Conference Series: Materials Science and Engineering 995 (15 de diciembre de 2020): 012045. http://dx.doi.org/10.1088/1757-899x/995/1/012045.
Texto completoFlorea, Iacob y Daniela Lucia Manea. "Analysis of Thermal Insulation Building Materials Based on Natural Fibers". Procedia Manufacturing 32 (2019): 230–35. http://dx.doi.org/10.1016/j.promfg.2019.02.207.
Texto completoTesis sobre el tema "Analysis of natural materials"
Kopec, Grant Michael. "Examining natural resource futures with material flow analysis". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709409.
Texto completoHassel, Beatriz Ivón. "ANALYSIS OF NATURAL MATERIALS AND STRUCTURES BY NON-CONTACT STRAIN MEASUREMENT METHODS". Kyoto University, 2010. http://hdl.handle.net/2433/120467.
Texto completo0048
新制・課程博士
博士(農学)
甲第15424号
農博第1809号
新制||農||979(附属図書館)
学位論文||H22||N4523(農学部図書室)
27902
京都大学大学院農学研究科森林科学専攻
(主査)教授 小松 幸平, 教授 中野 隆人, 教授 矢野 浩之
学位規則第4条第1項該当
Guan, Juan. "Investigations on natural silks using dynamic mechanical thermal analysis (DMTA)". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:c16d816c-84e3-4186-8d6d-45071b9a7067.
Texto completoEllis, Marguerite. "Investigation of Multiwalled Carbon Nanofiber - Graphite Layer Composites and Analysis of Natural Chalks". Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/205417.
Texto completoScotter, Michael Joseph. "Aspects of the chemistry and analysis of the food colouring materials annatto and curcumin". Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327600.
Texto completoFernandes, Fábio António Oliveira. "Biomechanical analysis of helmeted head impacts: novel materials and geometries". Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/21227.
Texto completoA cortiça é um material celular natural capaz de suster quantidades consideráveis de energia. Estas características tornam este material ideal para determinadas aplicações como a proteção de impactos. Considerando equipamentos de segurança passiva pessoal, os materiais sintéticos são hoje em dia os mais utilizados, em particular o poliestireno expandido. Este também é capaz de absorver razoáveis quantidades de energia via deformação permanentemente. Por outro lado, a cortiça além de ser um material natural, é capaz de recuperar grande parte da sua forma após deformada, uma característica desejada em aplicações com multi-impacto. Neste trabalho é efetuada uma avaliação da aplicabilidade da cortiça em equipamentos de segurança pessoal, especificamente capacetes. Vários tipos de cortiça aglomerada foram caracterizados experimentalmente. Impactos foram simulados numericamente para avaliar a validade dos modelos constitutivos e as propriedades utilizadas para simular o comportamento da cortiça. Capacetes foram selecionados como caso de estudo, dado as energias de impacto e repetibilidade de impactos a que estes podem ser sujeitos. Para avaliar os capacetes de um ponto de vista biomecânico, um modelo de cabeça humana em elementos finitos foi desenvolvido. Este foi validado de acordo com testes em cadáveres existentes na literatura. Dois modelos de capacete foram modelados. Um modelo de um capacete rodoviário feito de materiais sintéticos, o qual se encontra disponível no mercado e aprovado pelas principais normas de segurança de capacetes, que serve de referência. Este foi validado de acordo com os impactos da norma. Após validado, este foi avaliado com o modelo de cabeça humana em elementos finitos e uma análise ao risco de existência de lesões foi efetuado. Com este mesmo capacete, foi concluído que para incorporar cortiça aglomerada, a espessura teria de ser reduzida. Então um novo modelo de capacete foi desenvolvido, sendo este uma espécie de modelo genérico com espessuras constantes. Um estudo paramétrico foi realizado, variando a espessura do capacete e submetendo o mesmo a duplos impactos. Os resultados destes impactos e da análise com o modelo de cabeça indicaram uma espessura ótima de 40 mm de cortiça aglomerada, com a qual o capacete tem uma melhor resposta a vários impactos do que se feito de poliestireno expandido.
Cork is a natural cellular material capable of withstanding considerable amounts of energy. These features make it an ideal material for some applications, such as impact protection. Regarding personal safety gear, synthetic materials, particularly expanded polystyrene, are typically used. These are also able to absorb reasonable amounts of energy by deforming permanently. On the other hand, in addition to cork being a natural material, it recovers almost entirely after deformation, which is a desired characteristic in multi-impact applications. In this work, the applicability of agglomerated cork in personal safety gear, specifically helmets, is analysed. Different types of agglomerated cork were experimentally characterized. These experiments were simulated in order to assess the validity of the constitutive models used to replicate cork's mechanical behaviour. In order to assess the helmets from a biomechanical point of view, a finite element human head model was developed. This head model was validated by simulating the experiments performed on cadavers available in the literature. Two helmet models were developed. One of a motorcycle helmet made of synthetic materials, which is available on the market and certified by the main motorcycle helmets safety standards, being used as reference. This helmet model was validated against the impacts performed by the European standard. After validated, this helmet model was analysed with the human head model, by assessing its head injury risk. With this helmet, it was concluded that a thinner helmet made of agglomerated cork might perform better. Thus, a new helmet model with a generic geometry and a constant thickness was developed. Several versions of it were created by varying the thickness and subjecting them to double impacts. The results from these impacts and the analyses carried out with the finite element head model indicated an optimal thickness of 40 mm, with which the agglomerated cork helmet performed better than the one made of expanded polystyrene.
Ghaderidosst, Melody, Grabe Vilma Hurtigh, Rebecka Norman, Adam Rosvall y Evelina Wiksten. "Production Process for Tunnel Modeling : An Analysis of Composites for Water Applications". Thesis, Uppsala universitet, Institutionen för materialvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444830.
Texto completode, las Heras Reverte Víctor. "Evaluation of natural materials in Sustainable Buildings : A potential solution to the European 2050 long-term strategy". Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300115.
Texto completoWindsor-Collins, Andrea Grace. "Resolving the morphological and mechanical properties of palm petioles : shape analysis methods for symmetric sections of natural form". Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13722.
Texto completoPalm, Viveka. "Material flow analyses in technosphere and biosphere – metals, natural resources and chemical products". Doctoral thesis, KTH, Civil and Environmental Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3318.
Texto completoLibros sobre el tema "Analysis of natural materials"
R, Wolf Wayne, ed. Biological reference materials: Availability, uses, and need for variation of nutrient measurement. New York: Wiley, 1985.
Buscar texto completo1943-, Wolf Wayne R. y Federation of Analytical Chemistry and Spectroscopy Societies. Meeting, eds. Biological reference materials: Availability, uses, and need for validation of nutrient measurement. New York: Wiley, 1985.
Buscar texto completoŠesták, Jaroslav. Thermal analysis of Micro, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics and Thermodynamics. Dordrecht: Springer Netherlands, 2013.
Buscar texto completoNatural element method for the simulation of structures and processes. London: ISTE, 2011.
Buscar texto completoLarson, Magnus. Analysis of cross-shore movement of natural longshore bars and material placed to create longshore bars. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1992.
Buscar texto completoCenter, Langley Research, ed. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.
Buscar texto completoCenter, Langley Research, ed. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.
Buscar texto completoVeer, Grishja van der. Geochemical soil survey of the Netherlands: Atlas of major and trace elements in topsoil and parent material; assessment of natural and anthropogenic enrichment factors. Utrecht: Koninklijk Nederlands Aardrijkskundig Genootschap, 2005.
Buscar texto completoGenootschap, Koninklijk Nederlands Aardrijkskundig y Rijksuniversiteit te Utrecht. Faculteit Geowetenschappen., eds. Geochemical soil survey of the Netherlands: Atlas of major and trace elements in topsoil and parent material; assessment of natural and anthropogenic enrichment factors. Utrecht: Koninklijk Nederlands Aardrijkskundig Genootschap, Faculteit Geowetenschappen Universiteit Utrecht, 2006.
Buscar texto completoAkbarov, Surkay. Stability Loss and Buckling Delamination: Three-Dimensional Linearized Approach for Elastic and Viscoelastic Composites. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Buscar texto completoCapítulos de libros sobre el tema "Analysis of natural materials"
Gratuze, Bernard. "Analysis of Vitreous Archaeological Materials by LA-ICP-MS". En Natural Science in Archaeology, 137–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49894-1_9.
Texto completoDussubieux, Laure. "Analysis of Non-siliceous Archaeological Materials by LA-ICP-MS". En Natural Science in Archaeology, 91–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49894-1_6.
Texto completoGuo, Yan, Tao Wang, Chenglong Xu, Limin Liu, Lizhen Wang, Zhen Qin, Zhentao Liu et al. "Analysis of corrosion factors in natural gas wells". En Advances in Energy Materials and Environment Engineering, 142–46. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003332664-22.
Texto completoFreitas, M. G. S., E. D. F. Castilho, A. R. G. Azevedo, J. A. T. Linhares júnior, M. T. Marvila y S. N. Monteiro. "Characterization and Stain Analysis in Natural and Artificial Rocks". En Characterization of Minerals, Metals, and Materials 2022, 229–37. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92373-0_21.
Texto completoKourkoulis, S. K., E. Ganniari-Papageorgiou y N. L. Ninis. "The Size-Effect for Natural Building Stones". En Experimental Analysis of Nano and Engineering Materials and Structures, 957–58. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_476.
Texto completoSubramaniam, Nitya, Gul e. Saman y Edwin R. Hancock. "Natural Material Segmentation and Classification Using Polarisation". En Pattern Recognition and Image Analysis, 468–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21257-4_58.
Texto completoKheirikhah, Mohammad Mahdi, Vahid Babaghasabha, Arash Naeimi Abkenari y Mohammad Ehsan Edalat. "Natural Vibration Analysis of Soft Core Corrugated Sandwich Plates Using Three-Dimensional Finite Element Method". En Advanced Structured Materials, 163–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31497-1_11.
Texto completoPoletto, Matheus, Heitor L. Ornaghi Júnior y Ademir J. Zattera. "Thermal Decomposition of Natural Fibers: Kinetics and Degradation Mechanisms". En Reactions and Mechanisms in Thermal Analysis of Advanced Materials, 515–45. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119117711.ch21.
Texto completoErtel, A., M. Betzl y H. Kaempf. "Texture Investigation of Natural Rock-Salt by Neutron Diffraction". En X-Ray and Neutron Structure Analysis in Materials Science, 139–42. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0767-9_20.
Texto completoKourkoulis, S. K. "Transversely Isotropic Natural Building Stones Under Three-Point Bending". En Experimental Analysis of Nano and Engineering Materials and Structures, 951–52. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_473.
Texto completoActas de conferencias sobre el tema "Analysis of natural materials"
Moskvina, E. Yu y K. V. Syzrantseva. "Spectral analysis of tubing natural frequencies". En MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2019): Proceedings of the 13th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135116.
Texto completoWulandari, Dyah Arum, Nasruddin y Euis Djubaedah. "Thermal behavior and structure stability analysis of Indonesian natural zeolite". En INTERNATIONAL CONFERENCE ON TRENDS IN MATERIAL SCIENCE AND INVENTIVE MATERIALS: ICTMIM 2020. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0014649.
Texto completoTian, Y. y C. Y. Zhao. "Thermal Analysis in Phase Change Materials (PCMs) Embedded With Metal Foams". En 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22452.
Texto completoMATSUO, N., K. SOMEYA, Y. UEDA, H. ARAKAWA y M. MAEDA. "CHEMILUMINESCENT ANALYSIS OF HYDROGEN PEROXIDE GENERATION FROM NATURAL ANTIMICROBIAL MATERIALS". En Proceedings of the 13th International Symposium. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702203_0075.
Texto completoWang, Qingmei y Peng Shi. "Notice of Retraction: Applications of fuzzy judgment in analysis of materials". En 2010 Sixth International Conference on Natural Computation (ICNC). IEEE, 2010. http://dx.doi.org/10.1109/icnc.2010.5582730.
Texto completoSong, Hyun Jeong, Young-Tai Choi, Norman M. Wereley y Ashish S. Purekar. "Analysis of Energy Harvesting Devices Using Macro-Fiber Composite Materials". En ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35786.
Texto completoZhang, Hui, Xiaxi Li, Linlin Xing y Qingyu Wang. "The design and thermodynamic analysis of electricity-Compressed Natural Gas multi-compression process using natural gas pressure energy". En 2017 3rd International Forum on Energy, Environment Science and Materials (IFEESM 2017). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/ifeesm-17.2018.174.
Texto completoLin, Zhicheng, Chengwei Huang, Fei He y Qiongxian Gao. "Analysis of natural vibration characteristics of pre-stressed apace truss". En First International Conference on Information Sciences, Machinery, Materials and Energy. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icismme-15.2015.14.
Texto completoAtmakuri, Ayyappa, Giedrius Janusas, Madhusudhan Siddabathula y Arvydas Palevicius. "Wettability and Moisture Analysis on Natural Fiber Reinforced Epoxy Resin Hybrid Composites". En 2020 Mechatronics Systems and Materials (MSM). IEEE, 2020. http://dx.doi.org/10.1109/msm49833.2020.9202320.
Texto completoRinawati, Dyah Ika, Diana Puspita Sari, Bambang Purwanggono y Andy Tri Hermawan. "Environmental impact analysis of batik natural dyes using life cycle assessment". En 3RD INTERNATIONAL MATERIALS, INDUSTRIAL AND MANUFACTURING ENGINEERING CONFERENCE (MIMEC2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5010661.
Texto completoInformes sobre el tema "Analysis of natural materials"
Becker, Sarah, Heather Sussman, S. Blundell, Vern Vanderbilt y Igor Semyonov. Analysis of spectropolarimetric responses in the visible and infrared for differentiation between similar materials. Engineer Research and Development Center (U.S.), septiembre de 2022. http://dx.doi.org/10.21079/11681/45422.
Texto completoBerkowitz, Jacob, Nathan Beane, Kevin Philley, Nia Hurst y Jacob Jung. An assessment of long-term, multipurpose ecosystem functions and engineering benefits derived from historical dredged sediment beneficial use projects. Engineer Research and Development Center (U.S.), agosto de 2021. http://dx.doi.org/10.21079/11681/41382.
Texto completoPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, septiembre de 2021. http://dx.doi.org/10.46337/210930.
Texto completoScience, Fera. Analysis of CBD Products. Food Standards Agency, noviembre de 2022. http://dx.doi.org/10.46756/sci.fsa.cis490.
Texto completoMyshakin, Evgeniy M., Vyacheslav N. Romanov y Randall Timothy Cygan. Natural materials for carbon capture. Office of Scientific and Technical Information (OSTI), noviembre de 2010. http://dx.doi.org/10.2172/1002102.
Texto completoCajas, María Augusta, Marcela Cabrera, Jaime Astudillo, Yulissa Abad y Daniela Astudillo. Accuracy in marginal and/or internal adaptation of full-coverage fixed prostheses made with digital versus conventional impressions: an overview of systematic reviews and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, octubre de 2021. http://dx.doi.org/10.37766/inplasy2021.10.0024.
Texto completoSavosko, V., I. Komarova, Yu Lykholat, E. Yevtushenko y T. Lykholat. Predictive model of heavy metals inputs to soil at Kryvyi Rih District and its use in the training for specialists in the field of Biology. IOP Publishing, 2021. http://dx.doi.org/10.31812/123456789/4511.
Texto completoСавосько, Василь Миколайович, Ірина Олександрівна Комарова, Юрій Васильович Лихолат, Едуард Олексійович Євтушенко, y Тетяна Юріївна Лихолат. Predictive Model of Heavy Metals Inputs to Soil at Kryvyi Rih District and its Use in the Training for Specialists in the Field of Biology. IOP Publishing, 2021. http://dx.doi.org/10.31812/123456789/4266.
Texto completoPopel, Maiia V. y Mariya P. Shyshkina. The Cloud Technologies and Augmented Reality: the Prospects of Use. [б. в.], noviembre de 2018. http://dx.doi.org/10.31812/123456789/2662.
Texto completoGrubb, T. G. Constructing bald eagle nests with natural materials. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1995. http://dx.doi.org/10.2737/rm-rn-535.
Texto completo