Literatura académica sobre el tema "An RNase active on dsRNA"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "An RNase active on dsRNA".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "An RNase active on dsRNA"

1

Weinheimer, Isabel, Kajohn Boonrod, Mirko Moser, Michael Wassenegger, Gabi Krczal, Sarah J. Butcher y Jari P. T. Valkonen. "Binding and processing of small dsRNA molecules by the class 1 RNase III protein encoded by sweet potato chlorotic stunt virus". Journal of General Virology 95, n.º 2 (1 de febrero de 2014): 486–95. http://dx.doi.org/10.1099/vir.0.058693-0.

Texto completo
Resumen
Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus, family Closteroviridae) causes heavy yield losses in sweet potato plants co-infected with other viruses. The dsRNA-specific class 1 RNase III–like endoribonuclease (RNase3) encoded by SPCSV suppresses post-transcriptional gene silencing and eliminates antiviral defence in sweet potato plants in an endoribonuclease activity-dependent manner. RNase3 can cleave long dsRNA molecules, synthetic small interfering RNAs (siRNAs), and plant- and virus-derived siRNAs extracted from sweet potato plants. In this study, conditions for efficient expression and purification of enzymically active recombinant RNase3 were established. Similar to bacterial class 1 RNase III enzymes, RNase3-Ala (a dsRNA cleavage-deficient mutant) bound to and processed double-stranded siRNA (ds-siRNA) as a dimer. The results support the classification of SPCSV RNase3 as a class 1 RNase III enzyme. There is little information about the specificity of RNase III enzymes on small dsRNAs. In vitro assays indicated that ds-siRNAs and microRNAs (miRNAs) with a regular A-form conformation were cleaved by RNase3, but asymmetrical bulges, extensive mismatches and 2′-O-methylation of ds-siRNA and miRNA interfered with processing. Whereas Mg2+ was the cation that best supported the catalytic activity of RNase3, binding of 21 nt small dsRNA molecules was most efficient in the presence of Mn2+. Processing of long dsRNA by RNase3 was efficient at pH 7.5 and 8.5, whereas ds-siRNA was processed more efficiently at pH 8.5. The results revealed factors that influence binding and processing of small dsRNA substrates by class 1 RNase III in vitro or make them unsuitable for processing by the enzyme.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Grünberg, Sebastian, Baptiste Coxam, Tien-Hao Chen, Nan Dai, Lana Saleh, Ivan R. Corrêa, Nicole M. Nichols y Erbay Yigit. "E. coli RNase I exhibits a strong Ca2+-dependent inherent double-stranded RNase activity". Nucleic Acids Research 49, n.º 9 (22 de abril de 2021): 5265–77. http://dx.doi.org/10.1093/nar/gkab284.

Texto completo
Resumen
Abstract Since its initial characterization, Escherichia coli RNase I has been described as a single-strand specific RNA endonuclease that cleaves its substrate in a largely sequence independent manner. Here, we describe a strong calcium (Ca2+)-dependent activity of RNase I on double-stranded RNA (dsRNA), and a Ca2+-dependent novel hybridase activity, digesting the RNA strand in a DNA:RNA hybrid. Surprisingly, Ca2+ does not affect the activity of RNase I on single stranded RNA (ssRNA), suggesting a specific role for Ca2+ in the modulation of RNase I activity. Mutation of a previously overlooked Ca2+ binding site on RNase I resulted in a gain-of-function enzyme that is highly active on dsRNA and could no longer be stimulated by the metal. In summary, our data imply that native RNase I contains a bound Ca2+, allowing it to target both single- and double-stranded RNAs, thus having a broader substrate specificity than originally proposed for this traditional enzyme. In addition, the finding that the dsRNase activity, and not the ssRNase activity, is associated with the Ca2+-dependency of RNase I may be useful as a tool in applied molecular biology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Iqbal, Munir, Emma Poole, Stephen Goodbourn y John W. McCauley. "Role for Bovine Viral Diarrhea Virus Erns Glycoprotein in the Control of Activation of Beta Interferon by Double-Stranded RNA". Journal of Virology 78, n.º 1 (1 de enero de 2004): 136–45. http://dx.doi.org/10.1128/jvi.78.1.136-145.2004.

Texto completo
Resumen
ABSTRACT Production of alpha/beta interferon in response to viral double-stranded RNA (dsRNA) produced during viral replication is a first line of defense against viral infections. Here we demonstrate that the Erns glycoprotein of the pestivirus bovine viral diarrhea virus can act as an inhibitor of dsRNA-induced responses of cells. This effect is seen whether Erns is constitutively expressed in cells or exogenously added to the culture medium. The Erns effect is specific to dsRNA since activation of NF-κB in cells infected with Semliki Forest virus or treated with tumor necrosis factor alpha was not affected. We also show that Erns contains a dsRNA-binding activity, and its RNase is active against dsRNA at a low pH. Both the dsRNA binding and RNase activities are required for the inhibition of dsRNA signaling, and we discuss here a model to account for these observations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gupta, Ankush y Pramod C. Rath. "Curcumin, a Natural Antioxidant, Acts as a Noncompetitive Inhibitor of Human RNase L in Presence of Its Cofactor 2-5AIn Vitro". BioMed Research International 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/817024.

Texto completo
Resumen
Ribonuclease L (RNase L) is an antiviral endoribonuclease of the innate immune system, which is induced and activated by viral infections, interferons, and double stranded RNA (dsRNA) in mammalian cells. Although, RNase L is generally protective against viral infections, abnormal RNase L expression and activity have been associated with a number of diseases. Here, we show that curcumin, a natural plant-derived anti-inflammatory active principle, inhibits RNase L activity; hence, it may be exploited for therapeutic interventions in case of pathological situations associated with excess activation of RNase L.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Li, Yize, Shuvojit Banerjee, Yuyan Wang, Stephen A. Goldstein, Beihua Dong, Christina Gaughan, Robert H. Silverman y Susan R. Weiss. "Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses". Proceedings of the National Academy of Sciences 113, n.º 8 (8 de febrero de 2016): 2241–46. http://dx.doi.org/10.1073/pnas.1519657113.

Texto completo
Resumen
The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)–RNase L system is an IFN-induced antiviral pathway. RNase L activity depends on 2-5A, synthesized by OAS. Although all three enzymatically active OAS proteins in humans—OAS1, OAS2, and OAS3—synthesize 2-5A upon binding dsRNA, it is unclear which are responsible for RNase L activation during viral infection. We used clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein-9 nuclease (Cas9) technology to engineer human A549-derived cell lines in which each of the OAS genes or RNase L is knocked out. Upon transfection with poly(rI):poly(rC), a synthetic surrogate for viral dsRNA, or infection with each of four viruses from different groups (West Nile virus, Sindbis virus, influenza virus, or vaccinia virus), OAS1-KO and OAS2-KO cells synthesized amounts of 2-5A similar to those synthesized in parental wild-type cells, causing RNase L activation as assessed by rRNA degradation. In contrast, OAS3-KO cells synthesized minimal 2-5A, and rRNA remained intact, similar to infected RNase L-KO cells. All four viruses replicated to higher titers in OAS3-KO or RNase L-KO A549 cells than in parental, OAS1-KO, or OAS2-KO cells, demonstrating the antiviral effects of OAS3. OAS3 displayed a higher affinity for dsRNA in intact cells than either OAS1 or OAS2, consistent with its dominant role in RNase L activation. Finally, the requirement for OAS3 as the major OAS isoform responsible for RNase L activation was not restricted to A549 cells, because OAS3-KO cells derived from two other human cell lines also were deficient in RNase L activation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Magkouras, Ioannis, Philippe Mätzener, Till Rümenapf, Ernst Peterhans y Matthias Schweizer. "RNase-dependent inhibition of extracellular, but not intracellular, dsRNA-induced interferon synthesis by Erns of pestiviruses". Journal of General Virology 89, n.º 10 (1 de octubre de 2008): 2501–6. http://dx.doi.org/10.1099/vir.0.2008/003749-0.

Texto completo
Resumen
Recombinant pestivirus envelope glycoprotein Erns has been shown to interfere with dsRNA-induced interferon (IFN-α/β) synthesis. This study demonstrated that authentic, enzymically active Erns produced in mammalian cells prevented a dsRNA-induced IFN response when present in the supernatant of bovine cells. Strikingly, IFN synthesis of cells expressing Erns was eliminated after extracellular addition, but not transfection, of dsRNA. Importantly, the same applied to cells infected with bovine viral diarrhea virus (BVDV) expressing Erns but lacking the N-terminal protease Npro. Free Erns concentrations circulating in the blood of animals persistently infected with BVDV were determined to be approximately 50 ng ml−1, i.e. at a similar order of magnitude as that displaying an effect on dsRNA-induced IFN expression in vitro. Whilst Npro blocks interferon regulatory factor-3-dependent IFN induction in infected cells, Erns may prevent constant IFN induction in uninfected cells by dsRNA that could originate from pestivirus-infected cells. This probably contributes to the survival of persistently BVDV-infected animals and maintains viral persistence in the host population.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Weiss, Susan R. "Activation and Antagonism of the OAS–RNase L Pathway". Proceedings 50, n.º 1 (4 de junio de 2020): 14. http://dx.doi.org/10.3390/proceedings2020050014.

Texto completo
Resumen
The oligoadenylate synthetase–ribonuclease L (OAS–RNase L) system is a potent antiviral pathway that severely limits the pathogenesis of many viruses. Upon sensing dsRNA, OASs produce 2′,5′-oligoadenylates (2-5A) that activate RNase L to cleave both host and viral single-stranded RNA, thereby limiting protein production, virus replication and spread, leading to apoptotic cell death. Endogenous host dsRNA, which accumulates in the absence of adenosine deaminase acting on RNA (ADAR)1, can also activate RNase L and lead to apoptotic cell death. RNase L activation and antiviral activity during infections with several types of viruses in human and bat cells is dependent on OAS3 but independent of virus-induced interferon (IFN) and, thus, RNase L can be activated even in the presence of IFN antagonists. Differently from other human viruses examined, Zika virus is resistant to the antiviral activity of RNase L and instead utilizes RNase L to enhance its replication factories to produce more infectious virus. Some betacoronaviruses antagonize RNase L activation by expressing 2′,5′-phosphodiesterases (PDEs) that cleave 2-5A and thereby antagonize activation of RNase L. The best characterized of these PDEs is the murine coronavirus (MHV) NS2 accessory protein. Enzymatically active NS2 is required for replication in myeloid cells and in the liver. Interestingly, while wild type mice clear MHV from the liver by 7–10 days post-infection, RNase L knockout mice fail to effectively clear MHV, probably due to diminished apoptotic death of infected cells. We suggest that RNase L antiviral activity stems from direct cleavage of viral genomes and cessation of protein synthesis as well as through promoting death of infected cells, limiting the spread of virus. Importantly, OASs are pattern recognition receptors and the OAS–RNase L pathway is a primary innate response pathway to viruses, capable of early response, coming into play before IFN is induced or when the virus shuts down IFN signaling.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Boyce, Mark y Polly Roy. "Recovery of Infectious Bluetongue Virus from RNA". Journal of Virology 81, n.º 5 (6 de diciembre de 2006): 2179–86. http://dx.doi.org/10.1128/jvi.01819-06.

Texto completo
Resumen
ABSTRACT Bluetongue virus (BTV) is an insect-vectored emerging pathogen of ruminants with the potential for devastating economic impact on European agriculture. BTV and many other members of the Reoviridae have remained stubbornly refractory to the development of methods for the rescue of infectious virus from cloned nucleic acid (reverse genetics). Partially disassembled virus particles are transcriptionally active, synthesizing viral transcripts in the cytoplasm of infected cells, in essence delivering viral nucleic acids in situ. With the goal of generating a reverse-genetics system for BTV, we examined the possibility of recovering infectious BTV by the transfection of BSR cells with BTV transcripts (single-stranded RNA [ssRNA]) synthesized in vitro using BTV core particles. Following transfection, viral-protein synthesis was detected by immunoblotting, and confocal examination of the cells showed a punctate cytoplasmic distribution of inclusion bodies similar to that seen in infected cells. Viral double-stranded RNA (dsRNA) was isolated from ssRNA-transfected cells, demonstrating that replication of the ssRNA had occurred. Additionally, infectious virus was present in the medium of transfected cells, as demonstrated by the passage of infectivity in BSR cells. Infectivity was sensitive to single-strand-specific RNase A, and cotransfection of genomic BTV dsRNA with transcribed ssRNA demonstrated that the ssRNA species, rather than dsRNA, were the active components. We conclude that it is possible to recover infectious BTV wholly from ssRNA, which suggests a means for establishing helper virus-independent reverse-genetics systems for members of the Reoviridae.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Askenase, Philip. "Suppressor T cell exosomes via miR-150* and antigen specific Ig light chains. (50.13)". Journal of Immunology 186, n.º 1_Supplement (1 de abril de 2011): 50.13. http://dx.doi.org/10.4049/jimmunol.186.supp.50.13.

Texto completo
Resumen
Abstract Tolerance in contact sensitivity (CS) is due to CD8+ suppressor T cell (Ts) released factor (TsF) that is phenol chloroform extractable (PCE), in RNA fraction of Qiagen DNA/RNA separation column, sensitive to RNase A, not DNase nor trypsin, and also sensitive to RNase III; a property of double stranded RNA (dsRNA) like miRNA. Sizing electrophoresis indicated the active inhibitory RNA was about 75bp; the size of pre-miRNA. TsF RNA also inhibited in vitro IL-2 responses of T cell lines. We concluded that the small suppressive dsRNA was in the miRNA family TsF RNA is transported systematically in vivo in exosomes in the blood plasma of Ts donors. Remarkably, the exosomes act antigen (Ag) specifically due to surface coat of Ag-specific immunoglobulin free light chains, likely derived from activated B-1 B cells, and absorbed to receptors on the exosome surface. Ag specificity of the exosomes that eluted from the Ag column provided enriched exosome RNA for cDNA cloning and deep sequencing to identify candidate miRNA-150*. We postulate that the suppressive Ag-specific exosomes act systemically in an endocrine manner, via the blood, to target Ag specific effector T cells at distant sites, and inhibit their function via transfer of the inhibitory miRNA. This is the first demonstration of systemic immunoregulation by exosomes delivering inhibitory miRNA Ag specifically from donor suppressor T cells to distant target effector T cells in an endocrine manner.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mogren, Christina L. y Jonathan Gary Lundgren. "In silico identification of off-target pesticidal dsRNA binding in honey bees (Apis mellifera)". PeerJ 5 (13 de diciembre de 2017): e4131. http://dx.doi.org/10.7717/peerj.4131.

Texto completo
Resumen
Background Pesticidal RNAs that silence critical gene function have great potential in pest management, but the benefits of this technology must be weighed against non-target organism risks. Methods Published studies that developed pesticidal double stranded RNAs (dsRNAs) were collated into a database. The target gene sequences for these pesticidal RNAs were determined, and the degree of similarity with sequences in the honey bee genome were evaluated statistically. Results We identified 101 insecticidal RNAs sharing high sequence similarity with genomic regions in honey bees. The likelihood that off-target sequences were similar increased with the number of nucleotides in the dsRNA molecule. The similarities of non-target genes to the pesticidal RNA was unaffected by taxonomic relatedness of the target insect to honey bees, contrary to previous assertions. Gene groups active during honey bee development had disproportionately high sequence similarity with pesticidal RNAs relative to other areas of the genome. Discussion Although sequence similarity does not itself guarantee a significant phenotypic effect in honey bees by the primary dsRNA, in silico screening may help to identify appropriate experimental endpoints within a risk assessment framework for pesticidal RNAi.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "An RNase active on dsRNA"

1

Nathania, Lilian. "Biochemical Analysis of Thermotoga maritima Ribonuclease III and its Ribosomal RNA Substrates". Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/140013.

Texto completo
Resumen
Chemistry
Ph.D.
The site-specific cleavage of double-stranded (ds) RNA is a conserved early step in bacterial ribosomal RNA (rRNA) maturation that is carried out by ribonuclease III. Studies on the RNase III mechanism of dsRNA cleavage have focused mainly on the enzymes from mesophiles such as Escherichia coli. In contrast, little is known of the RNA processing pathways and the functions of associated ribonucleases in the hyperthermophiles. Therefore, structural and biochemical studies of proteins from hyperthermophilic bacteria are providing essential insight on the sources of biomolecular thermostability, and how enzymes function at high temperatures. The biochemical behavior of RNase III of the hyperthermophilic bacterium Thermotoga maritima is analyzed using purified recombinant enzyme and the cognate pre-ribosomal RNAs as substrates. The T. maritima genome encodes a ~5,000 nucleotide (nt) transcript, expressed from the single ribosomal RNA (rRNA) operon. RNase III processing sites are expected to form through base-pairing of complementary sequences that flank the 16S and 23S rRNAs. The Thermotoga pre-16S and pre-23S processing stems are synthesized in the form of small hairpins, and are efficiently and site-specifically cleaved by Tm-RNase III at sites consistent with an in vivo role of the enzyme in producing the immediate precursors to the mature rRNAs. T. maritima (Tm)-RNase III activity is dependent upon divalent metal ion, with Mg^2+ as the preferred species, at concentrations >= 1 mM. Mn^2+, Co^2+ and Ni^2+ also support activity, but with reduced efficiency. The enzyme activity is also supported by salt (Na^+, K^+, or NH4^+) in the 50-80 mM range, with an optimal pH of ~8. Catalytic activity exhibits a broad temperature maximum of ~40-70 deg C, with significant activity retained at 95 deg C. Comparison of the Charged-versus-Polar (C-vP) bias of the protein side chains indicates that Tm-RNase III thermostability is due to large C-vP bias. Analysis of pre-23S substrate variants reveals a dependence of reactivity on the base-pair (bp) sequence in the proximal box (pb), a site of protein contact that functions as a positive determinant of recognition of E. coli (Ec)-RNase III substrates. The pb sequence dependence of reactivity is similar to that observed with the Ec-RNase III pb. Moreover, Tm-RNase III cleaves an Ec-RNase III substrate with identical specificity, and is inhibited by pb antideterminants that also inhibit Ec-Rnase III. These studies reveal the conservation acrosss a broad phylogenetic distance of substrate reactivity epitopes, both the positive and negative determinants, among bacterial RNase III substrates.
Temple University--Theses
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Saavedra, Mario Alejandro. "Expression, Purification and Characterization of a Soluble and Active RNAse H from the Hepatitis B Virus". VCU Scholars Compass, 2007. http://scholarscompass.vcu.edu/etd_retro/16.

Texto completo
Resumen
The HBV RNAse H has been cloned into the PET43a vector, which contains the NusA protein which works as a solubilizing fusion protein. The fusion NUS-RNAse H protein was cleaved by enterokinase; the cleaved RNAse H is about 17 Kda which remains soluble and active. A fluorescence assay utilizing a quenching mechanism was used to characterize the activity of NUS-RNAse H and cleaved RNAse H proteins. The beacon is a RNA:DNA hybrid oligonucleotide labeled with a 5'DABCYL and a 3'fluorescein, when RNAse H digests the RNA, DABCYL is released resulting in high fluorescence. The digestion of the RNA was also confirmed by gel analysis. The protein was identified by N-terminal amino acid sequence analysis of the fusion protein, SDS-PAGE, western blot utilizing HBV positive sera for primary antibodies, and enzyme immunoassay by peroxidase labeling of HBV RNAse H. Structural analysis of the protein was done by circular dichroism, tryptophan fluorescence, the generation of a model from HIV RNAse H and initial crystals which unfortunately did not diffract. The ability to produce good amounts soluble RNAse H, the development of a sensitive assay to test for activity and the solution of the crystal structure will help develop new anti-viral inhibitors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Abramo, Kristin N. "Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs". eScholarship@UMMS, 2020. https://escholarship.umassmed.edu/gsbs_diss/1099.

Texto completo
Resumen
Following the discovery of the one-dimensional sequence of human DNA, much focus has been directed on microscopy and molecular techniques to learn about the spatial organization of chromatin in a 3D cell. The development of these powerful tools has enabled high-resolution, genome-wide analysis of chromosome structure under many different conditions. In this thesis, I focus on how the organization of interphase chromatin is established and maintained following mitosis. Mitotic chromosomes are folded into helical loop arrays creating short and condensed chromosomes, while interphase chromosomes are decondensed and folded into a number of structures at different length scales ranging from loops between CTCF sites, enhancers and promoters to topologically associating domains (TADs), and larger compartments. While the chromatin organization at these two very different states is well defined, the transition from a mitotic to interphase chromatin state is not well understood. The aim of this thesis is to determine how interphase chromatin is organized following mitotic chromosome decondensation and to interrogate factors potentially responsible for driving the transition. First, I determine the temporal order with which CTCF-loops, TADs, and compartments reform as cells exit mitosis, revealing a unique structure at the anaphase-telophase transition never observed before. Second, I test the role of transcription in reformation of 3D chromosome structure and show that active transcription is not required for the formation of most interphase chromatin features; instead, I propose that transcription relies on the proper formation of these structures. Finally, I show that RNA in the interphase nucleus can be degraded with only slight consequences on the overall chromatin organization, suggesting that once interphase chromatin structures are achieved, the structures are stable and RNA is only required to reduce the mixing of active and inactive compartments. Together, these studies further our understanding of how interphase structures form, how these structures relate to functional activities of the interphase cell, and the stability of chromatin structures over time.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

VOTTARIELLO, FRANCESCA. "OLIGOMERIZATION OF RNase A:a) A STUDY OF THE INFLUENCE OF SERINE 80 RESIDUE ON THE 3D DOMAIN SWAPPING MECHANISMb) “ZERO-LENGTH” DIMERS OF RNase A AND THEIR CATIONIZATION WITH PEI". Doctoral thesis, 2010. http://hdl.handle.net/11562/344075.

Texto completo
Resumen
"Zero-length" dimers of ribonuclease A, a novel type of dimers formed by two RNase A molecules bound to each other through a zero-length amide bond [Simons, B.L. et al. (2007) Proteins 66, 183-195], were analyzed, and tested for their possible in vitro cytotoxic activity. Results: (i) Besides dimers, also trimers and higher oligomers can be identified among the products of the covalently linking reaction. (ii) The "zero-length" dimers prepared by us appear not to be a unique species, as was instead reported by Simons et al. The product is heterogeneous, as shown by the involvement in the amide bond of amino and carboxyl groups others than only those belonging to Lys66 and Glu9. This is demonstrated by results obtained with two RNase A mutants, E9A and K66A. (iii) The "zero-length" dimers degrade poly(A).poly(U) (dsRNA) and yeast RNA (ssRNA): while the activity against poly(A).poly(U) increases with the increase of the oligomer's basicity, the activity towards yeast RNA decreases with the increase of oligomers' basicity, in agreement with many previous data, but in contrast with the results reported by Simons et al. (iv) No cytotoxicity against various tumor cells lines could be evidenced in RNase A "zero-length" dimers. (v) They instead become cytotoxic if cationized by conjugation with polyethylenimine [Futami, J. et al. (2005) J. Biosci. Bioengin. 99, 95-103]. However, polyethylenimine derivatives of RNase A "zero-length" dimers and native, monomeric RNase A are equally cytotoxic. In other words, protein "dimericity" does not play any role in this case. Moreover, (vi) cytotoxicity seems not to be specific for tumor cells: polyethylenimine-cationized native RNase A is also cytotoxic towards human monocytes.
"Zero-length" dimers of ribonuclease A, a novel type of dimers formed by two RNase A molecules bound to each other through a zero-length amide bond [Simons, B.L. et al. (2007) Proteins 66, 183-195], were analyzed, and tested for their possible in vitro cytotoxic activity. Results: (i) Besides dimers, also trimers and higher oligomers can be identified among the products of the covalently linking reaction. (ii) The "zero-length" dimers prepared by us appear not to be a unique species, as was instead reported by Simons et al. The product is heterogeneous, as shown by the involvement in the amide bond of amino and carboxyl groups others than only those belonging to Lys66 and Glu9. This is demonstrated by results obtained with two RNase A mutants, E9A and K66A. (iii) The "zero-length" dimers degrade poly(A).poly(U) (dsRNA) and yeast RNA (ssRNA): while the activity against poly(A).poly(U) increases with the increase of the oligomer's basicity, the activity towards yeast RNA decreases with the increase of oligomers' basicity, in agreement with many previous data, but in contrast with the results reported by Simons et al. (iv) No cytotoxicity against various tumor cells lines could be evidenced in RNase A "zero-length" dimers. (v) They instead become cytotoxic if cationized by conjugation with polyethylenimine [Futami, J. et al. (2005) J. Biosci. Bioengin. 99, 95-103]. However, polyethylenimine derivatives of RNase A "zero-length" dimers and native, monomeric RNase A are equally cytotoxic. In other words, protein "dimericity" does not play any role in this case. Moreover, (vi) cytotoxicity seems not to be specific for tumor cells: polyethylenimine-cationized native RNase A is also cytotoxic towards human monocytes.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "An RNase active on dsRNA"

1

Shoseyov, Oded, Steven A. Weinbaum, Raphael Goren y Abhaya M. Dandekar. Biological Thinning of Fruit Set by RNAase in Deciduous Fruit Trees. United States Department of Agriculture, agosto de 1993. http://dx.doi.org/10.32747/1993.7568110.bard.

Texto completo
Resumen
Fruit thinning is a common and necessary practice for commercial fruit production in many deciduous tree fruit species. Fruit thinning in apple may be accomplished with a variety of chemical thinning agents, but the use of these chemicals is a subject of environmental concern. It has been shown recently that RNase enzyme, secreted from the stigma and the style, inhibits pollen germination and pollen tube elongation. In this study we have been able to show that Aspergillus niger B-1 RNase can effectively inhibit peach and apple pollen germination, and tube elongation in-vitro, as well as thin fruit in peach and apple, and reduce the number of seeds in citrus. The objectives of the research were to detrmine the conditions for effective thinning of (USA and Israel), develop fermentation process for cost effective production of RNase from A. niger. (Israel), and clone apple S-RNase cDNA (USA). All the objectives of the research were addressed. We have determined the optimal fermentation conditions for cost effective production of the A. niger at a 20,000 liters scale. TheA. niger B1 RNase was isolated to homogeneity and its kinetic and biochemical properties including its N-terminal sequence were fully characterized. The field test results both in Israel and California have shown variability in effectiveness and more work is needed to define the RNase concentration necessary to completely inhibit pollen development. Plant transformation vectors expressing anti-sense apple S-RNase genes were constructed (USA) with an attempt to produce self compatible transgenic apple trees. Bovine S-Protein cDNA was cloned and successfully expressed in E. coli (Israel). Plant transformation vector expressing the S-Protein gene was constructed (USA) with an attempt to produce transgenic plants expressing S-protein in the style. Exogenous application of S-peptide to these plants will result in active RNase and consequently prevention of fertilization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lers, Amnon y Pamela J. Green. LX Senescence-Induced Ribonuclease in Tomato: Function and Regulation. United States Department of Agriculture, septiembre de 2003. http://dx.doi.org/10.32747/2003.7586455.bard.

Texto completo
Resumen
Natural leaf senescence, which occurs even when growth conditions are near optimal, has a negative influence on yield. Postharvest induced senescence contributes to the losses of quality in flowers, foliage, and vegetables. Strategies designed to control the senescence process in crop plants could therefore have great applied significance. However, the successful design of such strategies requires a better insight into the senescence machinery and control in higher plants. A main feature of senescence is the hydrolysis of macromolecules by hydrolases of various types such as ribonucleases (RNases) and proteases. Previously we had identified and characterized the tomato LX RNase gene demonstrating its transcript to be highly and specifically induced during senescence. This reported study was focused on LX but also had broadened our research to other senescence-associated nucleic acids degrading enzymes to learn about their function and the regulation of their encoding genes. Beside tomato we used parsley and Arabidopsis for the study of: the bi-functional nuclease which has a role in senescence. The study of different senescence- associated nucleases in few plant systems will allow a more general view on function and regulation of these enzymes in senescence. The specific original proposed objectives included: 1. Study the consequences of alterations in LX RNase level on tomato leaf senescence and general development; 2. Analyze stimuli which may participate in senescence-specific activation of the LX gene; 3. Clone the senescence-associated BFNI nuclease gene homologue from tomato. 4. Further characterize the sequences required for senescence-specific gene expression. Homozygous transgenic plants in which LX gene was either inhibited or over-expressed were generated. In both of these LX mutated plants no major phenotypic consequences were observed, which may suggests that LX is not essential for plant growth under optimal growth conditions. Lack of any abnormalities in the LX over-expressing lines suggests that special system exist to allow function of the RNase only when needed. Detailed analyses of growth under stress and consequences to RNA metabolism are underway. We have analyzed LX expression on the protein level demonstrating that it is involved also in petal senescing. Our results suggest that LX is responding to complex regulation involving developmental, organ dependent factors and responds differently to hormonal or environmental stimuli in the different plant organs. The cloned 1.4 kb promoter was cloned and its analysis revealed that probably not all required elements for senescence induction are included. Biochemical analysis of senescence-associated be-functional nucleases in the different plants, tomato, parsley and Arabidopsis, suggests they belong to a sub-class within the type I plant nucleases. The parsley PcNUC1/2 nuclease protein was purified from senescing leaves its and activity was studied in vitro revealing endo-, double strand, nucleolytic activity and exo-nucleolytic activity. Its encoding gene was cloned and found to be induced on the mRNA level. The promoter of the related Arabidopsis BFNI nuclease was shown in both tomato and Arabidopsis to be able and direct senescence-specific expression suggesting that, at least part, the gene is regulated on the transcriptional level and that the mechanism for this senescence-specific regulation is conserved between different plants. Few plants in which the BFNI gene is mutated were identified which are subjected now to detailed analysis. Our results suggest that the senescence-related nucleic acid degrading enzymes share similarities in both function and regulation between different plants and possibly have important functions in processes un-related to senescence. Still, the function of these enzymes, at least in some cases is not essential to plant development under optimal growth conditions. We are now at the stage which permits in depth investigation of the specific functions and mode of molecular regulation of senescence-associated nucleases with the aid of the research tools developed. The isolated senescence-specific promoter, shown to be active in heterologous plant system, could be utilized in agricultural-related biotechnological applications for retardation of senescence.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Eyal, Yoram y Sheila McCormick. Molecular Mechanisms of Pollen-Pistil Interactions in Interspecific Crossing Barriers in the Tomato Family. United States Department of Agriculture, mayo de 2000. http://dx.doi.org/10.32747/2000.7573076.bard.

Texto completo
Resumen
During the evolutionary process of speciation in plants, naturally occurring barriers to reproduction have developed that affect the transfer of genes within and between related species. These barriers can occur at several different levels beginning with pollination-barriers and ending with hybrid-breakdown. The interaction between pollen and pistils presents one of the major barriers to intra- and inter-specific crosses and is the focus of this research project. Our long-term goal in this research proposal was defined to resolve questions on recognition and communication during pollen-pistil interactions in the extended tomato family. In this context, this work was initiated and planned to study the potential involvement of tomato pollen-specific receptor-like kinases (RLK's) in the interaction between pollen and pistils. By special permission from BARD the objectives of this research were extended to include studies on pollen-pistil interactions and pollination barriers in horticultural crops with an emphasis on citrus. Functional characterization of 2 pollen-specific RLK's from tomato was carried out. The data shows that both encode functional kinases that were active as recombinant proteins. One of the kinases was shown to accumulate mainly after pollen germination and to be phosphorylated in-vitro in pollen membranes as well as in-vivo. The presence of style extract resulted in dephosphorylation of the RLK, although no species specificity was observed. This data implies a role for at least one RLK in pollination events following pollen germination. However, a transgenic plant analysis of the RLK's comprising overexpression, dominant-negative and anti-sense constructs failed to provide answers on their role in pollination. While genetic effects on some of the plants were observed in both the Israeli and American labs, no clear functional answers were obtained. An alternative approach to addressing function was pursued by screening for an artificial ligand for the receptor domain using a peptide phage display library. An enriched peptide sequence was obtained and will be used to design a peptide-ligand to be tested for its effect o pollen germination and tube growth. Self-incompatibility (SI) in citrus was studied on 3 varieties of pummelo. SI was observed using fluorescence microscopy in each of the 3 varieties and compatibility relations between varieties was determined. An initial screen for an S-RNase SI mechanism yielded only a cDNA homologous to the group of S-like RNases, suggesting that SI results from an as yet unknown mechanism. 2D gel electrophoresis was applied to compare pollen and style profiles of different compatibility groups. A "polymorphic" protein band from style extracts was observed, isolated and micro-sequenced. Degenerate primers designed based on the peptide sequence date will be used to isolate the relevant genes i order to study their potential involvement in SI. A study on SI in the apple cultivar Top red was initiated. SI was found, as previously shown, to be complete thus requiring a compatible pollinator variety. A new S-RNase allele was discovered fro Top red styles and was found to be highly homologous to pear S-RNases, suggesting that evolution of these genes pre-dated speciation into apples and pears but not to other Rosaceae species. The new allele provides molecular-genetic tools to determine potential pollinators for the variety Top red as well as a tool to break-down SI in this important variety.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mevarech, Moshe, Jeremy Bruenn y Yigal Koltin. Virus Encoded Toxin of the Corn Smut Ustilago Maydis - Isolation of Receptors and Mapping Functional Domains. United States Department of Agriculture, septiembre de 1995. http://dx.doi.org/10.32747/1995.7613022.bard.

Texto completo
Resumen
Ustilago maydis is a fungal pathogen of maize. Some strains of U. maydis encode secreted polypeptide toxins capable of killing other susceptible strains of U. maydis. Resistance to the toxins is conferred by recessive nuclear genes. The toxins are encoded by genomic segments of resident double-strande RNA viruses. The best characterized toxin, KP6, is composed of two polypeptides, a and b, which are not covalently linked. It is encoded by P6M2 dsRNA, which has been cloned, sequenced and expressed in a variety of systems. In this study we have shown that the toxin acts on the membranes of sensitive cells and that both polypeptides are required for toxin activity. The toxin has been shown to function by creating new pores in the cell membrane and disrupting ion fluxes. The experiments performed on artificial phospholipid bilayers indicated that KP6 forms large voltage-independent, cation-selective channels. Experiments leading to the resolution of structure-function relationship of the toxin by in vitro analysis have been initiated. During the course of this research the collaboration also yielded X-ray diffracion data of the crystallized a polypeptide. The effect of the toxin on the pathogen has been shown to be receptor-mediated. A potential receptor protein, identified in membrane fractions of sensitive cells, was subjected to tryptic hydrolysis followed by amino-acid analysis. The peptides obtained were used to isolate a cDNA fragment by reverse PCR, which showed 30% sequence homology to the human HLA protein. Analysis of other toxins secreted by U. maydis, KP1 and KP4, have demonstrated that, unlike KP6, they are composed of a single polypeptide. Finally, KP6 has been expressed in transgenic tobacco plants, indicating that accurate processing by Kex2p-like activity occurs in plants as well. Using tobacco as a model system, we determined that active antifungal toxins can be synthesized and targeted to the outside of transgenic plant cells. If this methodology can be applied to other agronomically crop species, then U. maydis toxins may provide a novel means for biological control of pathogenic fungi.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía