Artículos de revistas sobre el tema "Amyloid-like assemblie"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Amyloid-like assemblie".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Bochicchio, Brigida, Maria Rosaria Armenante, Maria Antonietta Crudele y Antonietta Pepe. "Molecular Determinants for the Self-Assembly of Elastin Peptides". Conference Papers in Science 2014 (21 de agosto de 2014): 1–4. http://dx.doi.org/10.1155/2014/214235.
Texto completoVrancx, Céline, Devkee M. Vadukul, Nuria Suelves, Sabrina Contino, Ludovic D’Auria, Florian Perrin, Vincent van Pesch, Bernard Hanseeuw, Loïc Quinton y Pascal Kienlen-Campard. "Mechanism of Cellular Formation and In Vivo Seeding Effects of Hexameric β-Amyloid Assemblies". Molecular Neurobiology 58, n.º 12 (4 de octubre de 2021): 6647–69. http://dx.doi.org/10.1007/s12035-021-02567-8.
Texto completoVrancx, Céline, Devkee M. Vadukul, Nuria Suelves, Sabrina Contino, Ludovic D’Auria, Florian Perrin, Vincent van Pesch, Bernard Hanseeuw, Loïc Quinton y Pascal Kienlen-Campard. "Mechanism of Cellular Formation and In Vivo Seeding Effects of Hexameric β-Amyloid Assemblies". Molecular Neurobiology 58, n.º 12 (4 de octubre de 2021): 6647–69. http://dx.doi.org/10.1007/s12035-021-02567-8.
Texto completoSade Yazdi, Dorin, Dana Laor Bar-Yosef, Hanaa Adsi, Topaz Kreiser, Shahaf Sigal, Santu Bera, Dor Zaguri et al. "Homocysteine fibrillar assemblies display cross-talk with Alzheimer’s disease β-amyloid polypeptide". Proceedings of the National Academy of Sciences 118, n.º 24 (7 de junio de 2021): e2017575118. http://dx.doi.org/10.1073/pnas.2017575118.
Texto completoShaham-Niv, Shira, Lihi Adler-Abramovich, Lee Schnaider y Ehud Gazit. "Extension of the generic amyloid hypothesis to nonproteinaceous metabolite assemblies". Science Advances 1, n.º 7 (agosto de 2015): e1500137. http://dx.doi.org/10.1126/sciadv.1500137.
Texto completoAdsi, Hanaa, Shon A. Levkovich, Elvira Haimov, Topaz Kreiser, Massimiliano Meli, Hamutal Engel, Luba Simhaev et al. "Chemical Chaperones Modulate the Formation of Metabolite Assemblies". International Journal of Molecular Sciences 22, n.º 17 (25 de agosto de 2021): 9172. http://dx.doi.org/10.3390/ijms22179172.
Texto completoZhang, Jing, Jian Wang, Chengwei Ma y Junxia Lu. "Hydroxyapatite Formation Coexists with Amyloid-like Self-Assembly of Human Amelogenin". International Journal of Molecular Sciences 21, n.º 8 (22 de abril de 2020): 2946. http://dx.doi.org/10.3390/ijms21082946.
Texto completoSharkey, Lisa M., Nathaniel Safren, Amit S. Pithadia, Julia E. Gerson, Mark Dulchavsky, Svetlana Fischer, Ronak Patel et al. "Mutant UBQLN2 promotes toxicity by modulating intrinsic self-assembly". Proceedings of the National Academy of Sciences 115, n.º 44 (17 de octubre de 2018): E10495—E10504. http://dx.doi.org/10.1073/pnas.1810522115.
Texto completoPartouche, David, Valeria Militello, Andrea Gomez-Zavaglia, Frank Wien, Christophe Sandt y Véronique Arluison. "In Situ Characterization of Hfq Bacterial Amyloid: A Fourier-Transform Infrared Spectroscopy Study". Pathogens 8, n.º 1 (18 de marzo de 2019): 36. http://dx.doi.org/10.3390/pathogens8010036.
Texto completoYarawsky, Alexander E., Stefanie L. Johns, Peter Schuck y Andrew B. Herr. "The biofilm adhesion protein Aap from Staphylococcus epidermidis forms zinc-dependent amyloid fibers". Journal of Biological Chemistry 295, n.º 14 (26 de febrero de 2020): 4411–27. http://dx.doi.org/10.1074/jbc.ra119.010874.
Texto completoTerry, Cassandra, Adam Wenborn, Nathalie Gros, Jessica Sells, Susan Joiner, Laszlo L. P. Hosszu, M. Howard Tattum et al. "Ex vivo mammalian prions are formed of paired double helical prion protein fibrils". Open Biology 6, n.º 5 (mayo de 2016): 160035. http://dx.doi.org/10.1098/rsob.160035.
Texto completoCarpenter, Kayla, Rachel Brietta Bell, Julius Yunus, Angelika Amon y Luke Edwin Berchowitz. "Phosphorylation-Mediated Clearance of Amyloid-like Assemblies in Meiosis". Developmental Cell 45, n.º 3 (mayo de 2018): 392–405. http://dx.doi.org/10.1016/j.devcel.2018.04.001.
Texto completoShaham-Niv, Shira, Pavel Rehak, Dor Zaguri, Sofiya Kolusheva, Petr Král y Ehud Gazit. "Metabolite amyloid-like fibrils interact with model membranes". Chemical Communications 54, n.º 36 (2018): 4561–64. http://dx.doi.org/10.1039/c8cc01423j.
Texto completoZee, Chih-Te, Calina Glynn, Marcus Gallagher-Jones, Jennifer Miao, Carlos G. Santiago, Duilio Cascio, Tamir Gonen, Michael R. Sawaya y Jose A. Rodriguez. "Homochiral and racemic MicroED structures of a peptide repeat from the ice-nucleation protein InaZ". IUCrJ 6, n.º 2 (24 de enero de 2019): 197–205. http://dx.doi.org/10.1107/s2052252518017621.
Texto completoMarshall, Karen E. y Louise C. Serpell. "Structural integrity of β-sheet assembly". Biochemical Society Transactions 37, n.º 4 (22 de julio de 2009): 671–76. http://dx.doi.org/10.1042/bst0370671.
Texto completoClark, John I. "Self-assembly of protein aggregates in ageing disorders: the lens and cataract model". Philosophical Transactions of the Royal Society B: Biological Sciences 368, n.º 1617 (5 de mayo de 2013): 20120104. http://dx.doi.org/10.1098/rstb.2012.0104.
Texto completoTavassoly, Omid, Dorin Sade, Santu Bera, Shira Shaham-Niv, David J. Vocadlo y Ehud Gazit. "Quinolinic Acid Amyloid-like Fibrillar Assemblies Seed α-Synuclein Aggregation". Journal of Molecular Biology 430, n.º 20 (octubre de 2018): 3847–62. http://dx.doi.org/10.1016/j.jmb.2018.08.002.
Texto completoWolfe, Katie J., Hong Yu Ren, Philipp Trepte y Douglas M. Cyr. "The Hsp70/90 cochaperone, Sti1, suppresses proteotoxicity by regulating spatial quality control of amyloid-like proteins". Molecular Biology of the Cell 24, n.º 23 (diciembre de 2013): 3588–602. http://dx.doi.org/10.1091/mbc.e13-06-0315.
Texto completoZhang, Shao-Qing, Hai Huang, Junjiao Yang, Huong T. Kratochvil, Marco Lolicato, Yanxin Liu, Xiaokun Shu, Lijun Liu y William F. DeGrado. "Designed peptides that assemble into cross-α amyloid-like structures". Nature Chemical Biology 14, n.º 9 (30 de julio de 2018): 870–75. http://dx.doi.org/10.1038/s41589-018-0105-5.
Texto completoAl-Garawi, Zahraa S. "Zinc Metal Ion Affected the Structural Stability of Amyloid-Like Nanofibrils". Al-Mustansiriyah Journal of Science 29, n.º 3 (10 de marzo de 2019): 50. http://dx.doi.org/10.23851/mjs.v29i3.622.
Texto completoTheodoridis, Phaedra R., Michael Bokros, Dane Marijan, Nathan C. Balukoff, Dazhi Wang, Chloe C. Kirk, Taylor D. Budine et al. "Local translation in nuclear condensate amyloid bodies". Proceedings of the National Academy of Sciences 118, n.º 7 (10 de febrero de 2021): e2014457118. http://dx.doi.org/10.1073/pnas.2014457118.
Texto completoDiaferia, Carlo, Nicole Balasco, Davide Altamura, Teresa Sibillano, Enrico Gallo, Valentina Roviello, Cinzia Giannini, Giancarlo Morelli, Luigi Vitagliano y Antonella Accardo. "Assembly modes of hexaphenylalanine variants as function of the charge states of their terminal ends". Soft Matter 14, n.º 40 (2018): 8219–30. http://dx.doi.org/10.1039/c8sm01441h.
Texto completoDean, Dexter N. y Jennifer C. Lee. "Modulating functional amyloid formation via alternative splicing of the premelanosomal protein PMEL17". Journal of Biological Chemistry 295, n.º 21 (10 de abril de 2020): 7544–53. http://dx.doi.org/10.1074/jbc.ra120.013012.
Texto completoGazit, Ehud. "Reductionist Approach in Peptide-Based Nanotechnology". Annual Review of Biochemistry 87, n.º 1 (20 de junio de 2018): 533–53. http://dx.doi.org/10.1146/annurev-biochem-062917-012541.
Texto completoMorris, Kyle L., Alison Rodger, Matthew R. Hicks, Maya Debulpaep, Joost Schymkowitz, Frederic Rousseau y Louise C. Serpell. "Exploring the sequence–structure relationship for amyloid peptides". Biochemical Journal 450, n.º 2 (15 de febrero de 2013): 275–83. http://dx.doi.org/10.1042/bj20121773.
Texto completoSingh, Prabhjot, Nishima Wangoo y Rohit K. Sharma. "Phenylalanine dimer assembly structure as the basic building block of an amyloid like photoluminescent nanofibril network". Soft Matter 16, n.º 17 (2020): 4105–9. http://dx.doi.org/10.1039/d0sm00387e.
Texto completoGuo, Zhen, Zhiwei Shen, Yujiao Wang, Tingyuan Tan y Yi Zhang. "Peptides Co-Assembling into Hydrangea-Like Microstructures". Journal of Nanoscience and Nanotechnology 20, n.º 5 (1 de mayo de 2020): 3239–45. http://dx.doi.org/10.1166/jnn.2020.17393.
Texto completoLi, Chen, Lu Xu, Yi Y. Zuo y Peng Yang. "Tuning protein assembly pathways through superfast amyloid-like aggregation". Biomaterials Science 6, n.º 4 (2018): 836–41. http://dx.doi.org/10.1039/c8bm00066b.
Texto completoPérez-Chirinos Lallana, Laura, Ivan R. Sasselli y Aitziber L. Cortajarena. "A Multidisciplinary Approach to Design Amyloid-Like Peptides to Form Supramolecular Assemblies". Biophysical Journal 120, n.º 3 (febrero de 2021): 209a. http://dx.doi.org/10.1016/j.bpj.2020.11.1418.
Texto completoWalker, Lary C., Juliane Schelle y Mathias Jucker. "The Prion-Like Properties of Amyloid-β Assemblies: Implications for Alzheimer's Disease". Cold Spring Harbor Perspectives in Medicine 6, n.º 7 (7 de junio de 2016): a024398. http://dx.doi.org/10.1101/cshperspect.a024398.
Texto completoLópez Deber, María Pilar, David T. Hickman, Deepak Nand, Marc Baldus, Andrea Pfeifer y Andreas Muhs. "Engineering Amyloid-Like Assemblies from Unstructured Peptides via Site-Specific Lipid Conjugation". PLoS ONE 9, n.º 9 (10 de septiembre de 2014): e105641. http://dx.doi.org/10.1371/journal.pone.0105641.
Texto completoRay, Sudipta, Apurba K. Das, Michael G. B. Drew y Arindam Banerjee. "A short water-soluble self-assembling peptide forms amyloid-like fibrils". Chemical Communications, n.º 40 (2006): 4230. http://dx.doi.org/10.1039/b607657b.
Texto completoScanavachi, Gustavo, Yanis Ricardo Espinosa, Juan Ruso y Rosangela Itri. "Unveiling the Role of Surfactants on Amyloid-Like Protein Self-Assembling". Biophysical Journal 116, n.º 3 (febrero de 2019): 483a. http://dx.doi.org/10.1016/j.bpj.2018.11.2608.
Texto completoCarcamo-Noriega, Edson N. y Gloria Saab-Rincon. "Identification of fibrillogenic regions in human triosephosphate isomerase". PeerJ 4 (4 de febrero de 2016): e1676. http://dx.doi.org/10.7717/peerj.1676.
Texto completoBaker, Max O. D. G., Nirukshan Shanmugam, Chi L. L. Pham, Sarah R. Ball, Emma Sierecki, Yann Gambin, Megan Steain y Margaret Sunde. "The RHIM of the Immune Adaptor Protein TRIF Forms Hybrid Amyloids with Other Necroptosis-Associated Proteins". Molecules 27, n.º 11 (24 de mayo de 2022): 3382. http://dx.doi.org/10.3390/molecules27113382.
Texto completoKamada, Ayaka, Nitesh Mittal, L. Daniel Söderberg, Tobias Ingverud, Wiebke Ohm, Stephan V. Roth, Fredrik Lundell y Christofer Lendel. "Flow-assisted assembly of nanostructured protein microfibers". Proceedings of the National Academy of Sciences 114, n.º 6 (25 de enero de 2017): 1232–37. http://dx.doi.org/10.1073/pnas.1617260114.
Texto completoKoga, Tomoyuki, Kazuhiro Taguchi, Takatoshi Kinoshita y Masahiro Higuchi. "pH-Regulated formation of amyloid-like β-sheet assemblies from polyglutamate grafted polyallylamine". Chemical Communications, n.º 3 (8 de enero de 2002): 242–43. http://dx.doi.org/10.1039/b109574a.
Texto completoVitagliano, Luigi, Francesca Stanzione, Alfonso De Simone y Luciana Esposito. "Dynamics and stability of amyloid-like steric zipper assemblies with hydrophobic dry interfaces". Biopolymers 91, n.º 12 (diciembre de 2009): 1161–71. http://dx.doi.org/10.1002/bip.21182.
Texto completoHan, Zhenlin, Bei Zhang, Yi E. Wang, Yi Y. Zuo y Wei Wen Su. "Self-Assembled Amyloid-Like Oligomeric-Cohesin Scaffoldin for Augmented Protein Display on the Saccharomyces cerevisiae Cell Surface". Applied and Environmental Microbiology 78, n.º 9 (17 de febrero de 2012): 3249–55. http://dx.doi.org/10.1128/aem.07745-11.
Texto completoArya, Shruti, Arpana Kumari, Vijit Dalal, Mily Bhattacharya y Samrat Mukhopadhyay. "Appearance of annular ring-like intermediates during amyloid fibril formation from human serum albumin". Physical Chemistry Chemical Physics 17, n.º 35 (2015): 22862–71. http://dx.doi.org/10.1039/c5cp03782d.
Texto completoBothner, Brian, Yves Aubin y Richard W. Kriwacki. "Peptides Derived from Two Dynamically Disordered Proteins Self-Assemble into Amyloid-like Fibrils". Journal of the American Chemical Society 125, n.º 11 (marzo de 2003): 3200–3201. http://dx.doi.org/10.1021/ja028265w.
Texto completoOttoz, Diana S. M. y Luke E. Berchowitz. "The role of disorder in RNA binding affinity and specificity". Open Biology 10, n.º 12 (diciembre de 2020): 200328. http://dx.doi.org/10.1098/rsob.200328.
Texto completoNguyen, Van Duc, Asish Pal, Frank Snijkers, Mathieu Colomb-Delsuc, Giulia Leonetti, Sijbren Otto y Jasper van der Gucht. "Multi-step control over self-assembled hydrogels of peptide-derived building blocks and a polymeric cross-linker". Soft Matter 12, n.º 2 (2016): 432–40. http://dx.doi.org/10.1039/c5sm02088c.
Texto completoDaskalov, Asen, Birgit Habenstein, Raimon Sabaté, Mélanie Berbon, Denis Martinez, Stéphane Chaignepain, Bénédicte Coulary-Salin, Kay Hofmann, Antoine Loquet y Sven J. Saupe. "Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis". Proceedings of the National Academy of Sciences 113, n.º 10 (22 de febrero de 2016): 2720–25. http://dx.doi.org/10.1073/pnas.1522361113.
Texto completoKlose, Daniel, Sahithya Phani Babu Vemulapalli, Michal Richman, Safra Rudnick, Vered Aisha, Meital Abayev, Marina Chemerovski et al. "Cu2+-Induced self-assembly and amyloid formation of a cyclic d,l-α-peptide: structure and function". Physical Chemistry Chemical Physics 24, n.º 11 (2022): 6699–715. http://dx.doi.org/10.1039/d1cp05415e.
Texto completoWu, Xialian, Yeyang Ma, Kun Zhao, Jing Zhang, Yunpeng Sun, Yichen Li, Xingqi Dong et al. "The structure of a minimum amyloid fibril core formed by necroptosis-mediating RHIM of human RIPK3". Proceedings of the National Academy of Sciences 118, n.º 14 (31 de marzo de 2021): e2022933118. http://dx.doi.org/10.1073/pnas.2022933118.
Texto completoLi, Yaping, Na Li, Lei Wang, Qinhua Lu, Xiang Ji y Feng Zhang. "A Comparative Study on the Self-Assembly of Peptide TGV-9 by In Situ Atomic Force Microscopy". Microscopy and Microanalysis 26, n.º 2 (13 de febrero de 2020): 319–25. http://dx.doi.org/10.1017/s1431927620000082.
Texto completoGour, Nidhi, Chandra Kanth P., Bharti Koshti, Vivekshinh Kshtriya, Dhruvi Shah, Sunita Patel, Reena Agrawal-Rajput y Manoj K. Pandey. "Amyloid-like Structures Formed by Single Amino Acid Self-Assemblies of Cysteine and Methionine". ACS Chemical Neuroscience 10, n.º 3 (noviembre de 2018): 1230–39. http://dx.doi.org/10.1021/acschemneuro.8b00310.
Texto completoGanesh, S. y R. Jayakumar. "Structural transitions involved in a novel amyloid-like ?-sheet assemblage of tripeptide derivatives". Biopolymers 70, n.º 3 (21 de octubre de 2003): 336–45. http://dx.doi.org/10.1002/bip.10474.
Texto completoMcIntosh, Pauline B., Stephen R. Martin, Deborah J. Jackson, Jameela Khan, Erin R. Isaacson, Lesley Calder, Kenneth Raj et al. "Structural Analysis Reveals an Amyloid Form of the Human Papillomavirus Type 16 E1∧E4 Protein and Provides a Molecular Basis for Its Accumulation". Journal of Virology 82, n.º 16 (18 de junio de 2008): 8196–203. http://dx.doi.org/10.1128/jvi.00509-08.
Texto completo