Literatura académica sobre el tema "Amine solvents"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Amine solvents".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Amine solvents"
Liu, Xiangwei, Qian Ao, Shengyou Shi y Shuie Li. "CO2 capture by alcohol ammonia based deep eutectic solvents with different water content". Materials Research Express 9, n.º 1 (1 de enero de 2022): 015504. http://dx.doi.org/10.1088/2053-1591/ac47c6.
Texto completoAgarwal, Neha, Le Cao Nhien y Moonyong Lee. "Rate-Based Modeling and Assessment of an Amine-Based Acid Gas Removal Process through a Comprehensive Solvent Selection Procedure". Energies 15, n.º 18 (18 de septiembre de 2022): 6817. http://dx.doi.org/10.3390/en15186817.
Texto completoVijayaraghavan, Ranganathan y Douglas R. MacFarlane. "Charge Transfer Polymerization in Ionic Liquids". Australian Journal of Chemistry 57, n.º 2 (2004): 129. http://dx.doi.org/10.1071/ch03236.
Texto completoHasegawa, Miki, Yasunori Yamada, Ken-ichi Kumagai y Toshihiko Hoshi. "Electronic Structure of 2,6-Bis{.N-(2-hydroxyphenyl)immoinethyl}-4-methylphenol". Zeitschrift für Naturforschung B 54, n.º 7 (1 de julio de 1999): 929–39. http://dx.doi.org/10.1515/znb-1999-0717.
Texto completoSaeed Alshahrani. "Amino silicones solvent advantages to capture CO2 and improve plant sustainability". World Journal of Advanced Engineering Technology and Sciences 8, n.º 1 (28 de febrero de 2023): 277–81. http://dx.doi.org/10.30574/wjaets.2023.8.1.0053.
Texto completoLuu, Xuan Dinh, Thanh Thuy Nguyen, Ba Thuan Le y Mai Huong Le Thi. "Separation of Th from leachate of monazite sulphation process using amine solvent extraction". Nuclear Science and Technology 8, n.º 1 (1 de septiembre de 2021): 44–49. http://dx.doi.org/10.53747/jnst.v8i1.83.
Texto completoChen, Francis M. F., Young Lee, Rene Steinauer y N. Leo Benoiton. "Mixed anhydrides in peptide synthesis. A study of urethane formation with a contribution on minimization of racemization". Canadian Journal of Chemistry 65, n.º 3 (1 de marzo de 1987): 613–18. http://dx.doi.org/10.1139/v87-105.
Texto completoRaksajati, Anggit, Minh Ho y Dianne Wiley. "Solvent Development for Post-Combustion CO2 Capture: Recent Development and Opportunities". MATEC Web of Conferences 156 (2018): 03015. http://dx.doi.org/10.1051/matecconf/201815603015.
Texto completoLi, Peng y Huanrong Li. "Amine vapor responsive lanthanide complex entrapment: control of the ligand-to-metal and metal-to-metal energy transfer". Journal of Materials Chemistry C 4, n.º 11 (2016): 2165–69. http://dx.doi.org/10.1039/c5tc04377h.
Texto completoWilson, Aaron D. y Frederick F. Stewart. "Structure–function study of tertiary amines as switchable polarity solvents". RSC Adv. 4, n.º 22 (2014): 11039–49. http://dx.doi.org/10.1039/c3ra47724j.
Texto completoTesis sobre el tema "Amine solvents"
Garcia, Ortega Monica. "Theoretical and experimental study on novel amine and hybrid solvents for CO2 capture". Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/844875/.
Texto completoWang, Nan. "CO2 Separation - from Aqueous Amine Solvent to Ionic Liquid-based solvent". Licentiate thesis, Luleå tekniska universitet, Energivetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84244.
Texto completoBlasucci, Vittoria Madonna. "Organic solvents for catalysis and organic reactions". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31723.
Texto completoCommittee Chair: Charles Eckert; Committee Co-Chair: Charles Liotta; Committee Member: Amyn Teja; Committee Member: Christopher Jones; Committee Member: William Koros. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Lukhezo, Muchinyarawo. "Reactive solvent extraction of amino acids". Thesis, London South Bank University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245090.
Texto completoMoreira, Roger Cardoso. "Desenvolvimento de metodologia para separação de aminas quaternárias utilizando eletroforese não aquosa em microssistemas". Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/5899.
Texto completoApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-10T12:09:17Z (GMT) No. of bitstreams: 2 Dissertação - Roger Cardoso Moreira - 2015.pdf: 8605588 bytes, checksum: 30a0478ee44e03b86b3d5b0eec4354c1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-08-10T12:09:17Z (GMT). No. of bitstreams: 2 Dissertação - Roger Cardoso Moreira - 2015.pdf: 8605588 bytes, checksum: 30a0478ee44e03b86b3d5b0eec4354c1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2015-12-01
This study describes the development of an analytical methodology for the separation of quaternary amines using nonaqueous electrophoresis microchips coupled with capacitively coupled contactless conductivity detection (C4D). Initially, preliminary experiments were performed to evaluate two electrokinetic modes for sample introduction on chip, known as gated and floating approaches. Gated injection showed repeatability slightly better than floating mode. In addition, it also provided better analytical responses on the C4D system. During the development of analytical methodology for NAME-C4D, the electrolyte composition was optimized to ensure satisfactory separations on electrophoresis microchips. The electrolyte composed of sodium deoxycholate (NaDCHA) at concentration of 10 mmol/L dissolved in a mixture of MeOH/ACN at the ratio 90:10 (v/v) exhibited separations with high efficiency and resolution above 1. Then, it was realized the optimization of potential injection, separation and detection parameters (frequency and amplitude). Running electrolyte was prepared in both DMSO and DMF, however, the use of a mixture containing MeOH/ACN provided best analytical performance. The best results were obtained with electrolyte containing 10% ACN and 90% MeOH. In addition, different electrolyte compositions were also evaluated, but the electrolyte containing NaDCHA offered results slightly better when compared to others. The optimization of running buffer allowed the separation of nine quaternary amines in electrophoresis channels with effective length of 7.0 cm with analysis time lower than 120 s. The peak resolution was higher than 1 and the calculated separation efficiencies ranged from 77.000 to 185.000 pratos/m. This excellent performance was achieved using NAME conditions under high electric fields. The developed methodology was used for the analysis of quaternary amines in samples containing high salinity levels through the standard addition method. Linear correlation coefficients were obtained up to 0,990 for eight quaternary amines. Lastly, the use of NAME-C4D allowed to observe a strong dependence of the detector response according to the carbon number of quaternary amine molecules.
O presente trabalho descreve o desenvolvimento de uma metodologia analítica para separação de aminas quaternárias utilizando eletroforese não aquosa em microchips (NAME, do inglês non-aqueous microchip electrophoresis) com detecção condutométrica sem contato acoplada capacitivamente (C4D, do inglês capacitively coupled contactless conductivity detection). Inicialmente foi realizado um estudo para avaliação de dois modos de introdução da amostra nos microchips, denominados de gated e floating. O modo gated apresentou repetitividade ligeiramente melhor que o modo floating, além de proporcionar melhores respostas do detector C4D. No desenvolvimento da metodologia utilizando NAME-C4D, foi realizado um estudo para encontrar a composição ideal do eletrólito para as separações eletroforéticas. O eletrólito constituído de deoxicolato de sódio (NaDCHA), na concentração de 10 mmol/L, dissolvido em uma mistura de MeOH/ACN na proporção 90:10 (v/v), apresentou separações com alta eficiência e resolução superior a 1. A partir de então, foi realizada a otimização dos potenciais de injeção, separação e dos parâmetros de detecção (frequência e amplitude). Durante o desenvolvimento da metodologia, foram avaliados eletrólitos preparados em outros dois solventes, DMSO e DMF. Porém, a mistura de MeOH/ACN como solvente forneceu os melhores resultados, desta maneira também foi avaliada a adição de diferentes proporções de MeOH/ACN. Os melhores resultados foram obtidos com o eletrólito contendo 10% de ACN e 90% de MeOH. Na sequência, foram avaliadas diferentes composições do eletrólito, com a adição de outros compostos em substituição ao NaDCHA. Todos os eletrólitos avaliados apresentaram ótimas separações, porém o eletrólito com NaDCHA apresentou resultados ligeiramente superiores. Com a otimização da metodologia desenvolvida, obteve-se separações eletroforéticas de nove aminas quaternárias em microssistema contendo comprimento efetivo de 7,0 cm, com um tempo de análise inferior a 120 s. As separações apresentaram resolução superior a 1 e valores de eficiência entre 77,000 e 185,000 pratos/m, uma vez que com a utilização de solventes orgânicos, foi possível a aplicação de campos elétricos elevados. A metodologia desenvolvida foi avaliada através da determinação das aminas quaternárias, pelo método de adição de padrão, em uma matriz com elevada salinidade. Foram obtidos coeficientes de correlação lineares acima de 0,990 para oito aminas quaternárias. Durante o desenvolvimento do trabalho, foi observada uma clara dependência das respostas analítica em função da quantidade de carbono da molécula.
Fichera, Alfio. "Syntheses of triflu[o]romethyl-containing amino acids and development of catalysts capable of hydrolyzing the D-Ala-D-Lac depsipeptide /". Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.
Buscar texto completoAdviser: Krishna Kumar. Submitted to the Dept. of Chemistry. Includes bibliographical references (leaves 190-197). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Howell, Bill. "Physical and chemical aspects of the solvent extraction of uranium by a tertiary amine". Thesis, University of Ottawa (Canada), 1986. http://hdl.handle.net/10393/4574.
Texto completoLaw, Gim Hoong Erica. "Mutational analysis of solvent-exposed amino acids in Photinus pyralis luciferase". Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615816.
Texto completoQureshi, Numan. "Conducting tests of immobilized enzyme, Omega-transaminase with organic solvent". Thesis, KTH, Skolan för bioteknologi (BIO), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-163668.
Texto completoBritto, Patrícia Fonseca de [UNESP]. "Adsorção de íons Cu(II) sobre superfícies de sílicas gel modificadas com 4-amino-2-mercaptopirimidina e com 2-mercaptopirimidina". Universidade Estadual Paulista (UNESP), 2005. http://hdl.handle.net/11449/92017.
Texto completoA combinação de diferentes tipos de materiais para obtenção de novas propriedades tem despertado grande interesse em vários campos da ciência de materiais. Em processos de separação, é de considerável interesse o uso de materiais com propriedades básicas extremamente diferentes. Entre os suportes mais usados está a sílica gel, um material com tamanho de partículas e porosidade bem definidas, elevada área superficial, e estabilidades mecânica, química e térmica elevadas. Neste contexto, a sílica gel modificada com grupos organofuncionais pode ser utilizada para a adsorção de íons metálicos em soluções aquosas e não aquosas, pré-concentração e separação de íons metálicos. Neste trabalho, a sílica gel 60 (Merck), com tamanho de partículas entre 0,2 e 0,05 mm e área superficial específica de 486 m2.g-1, foi quimicamente modificada em duas etapas. Primeiro, a sílica gel foi quimicamente modificada com 3-cloropropiltrimetoxisilano, resultando o 3-cloropropil sílica gel (CPSG). Na segunda etapa, o produto resultante, CPSG, reagiu com 2-mercaptopirimidina e 4-amino-2-mercaptopirimidina, resultando os materiais sólidos 2-mercaptopirimidina-propil sílica gel (MPSG) e 4-amino-2-mercaptopirimidinapropil sílica gel (AMSG). As quantidades de grupos funcionais conectados na superfície da sílica gel, N0, foram 7,007 x 10-4 mols e 7,416 x 10-4 mols de moléculas por grama de sílica, para MPSG e AMSG, respectivamente. Conhecendo a área superficial específica e assumindo que as moléculas cobrem uniformemente a superfície, a densidade média, d, das moléculas ancoradas e a distância intermolecular média, l, podem ser calculadas aplicando as equações d = N0 N/SBET e l = (l/d) 1/2 , onde N é o número de Avogadro. Os valores calculados são d = 1,42 moléculas.nm2 e l = 0,979 nm, e d = 1,166 moléculas.nm2 e l = 0,926 nm, para MPSG e... .
The combination of different type of materials for achieving novel properties has always been of high interest in many fields of the materials sciences. The use of materials with extremely different basic properties, like organic and inorganic compounds, is of considerable interest in separation processes. Among the supports the most used is silica gel, a material of well-established particle sizes and well-define porosity, high surface area, and high mechanical, chemical, and thermal stability. In this context, silica gel modified with organofunctional groups has been used for adsorption of metal ions from aqueous and non-aqueous solutions, pre-concentration and separation of metallic ions. In this work, silica gel 60 (Merck) having secondary particles sized between 0,2 and 0,05 mm and specific surface area of 486 m2.g-1 was modified using a two step approach. First, the silica gel was chemically modified with 3- chloropropyltrimetoxysilane, resulting the 3-chloropropyl-silica gel (CPSG). Second, the resultant product, CPSG, reacted with 2-mercaptopyrimidine and 4-amino-2- mercaptopyrimidine, resulting the solid materials 2-mercaptopyrimidine-propyl-silica gel (MPSG) and 4-amino-2-mercaptopyrimidine-propyl-silica gel (AMSG). The quantities of functional groups attached on the silica gel surface, No, were 7,007 x 10-4 mols e 7,416 x 10-4 mols .g-1 of molecules per gram of silica, for MPSG and AMSG, respectively. It being known the specific surface area and assuming that the molecules uniformly cover the surface, the average density, d, of the attached molecules and the average intermolecular distance, l, can be calculated by applying the equations: d = N0 N /SBET and l = (l/d)1/2, where N is Avogadro's number. The calculated values were d = 1,042 molecules.nm-2 and l = 0,979 nm and d = 1,166 molecules.nm-2 and... (Complete abstract click electronic address below).
Libros sobre el tema "Amine solvents"
Leslie, Young Colin, Fogg P. G. T, Clever H. Lawrence y Hayduk Walter, eds. Ammonia, amines, phosphine, arsine, stibine, silane, germane and stannane in organic solvents. Oxford: Pergamon, 1985.
Buscar texto completoLiu, Helei. Post-combustion CO2 Capture Technology: By Using the Amine Based Solvents. Springer, 2018.
Buscar texto completoYoung, C. L. y P. G. T. Fogg. Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents: Ammonia, Amines, Phosphine and Arsine in Organic Solvents. Elsevier Science & Technology Books, 2013.
Buscar texto completoKrittanai, Chartchai. Helical propensity of amino acids changes with solvent environment. 1997.
Buscar texto completoAmmonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents. Elsevier, 1985. http://dx.doi.org/10.1016/c2009-0-01218-5.
Texto completoYoung, Colin L. Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents (Solubility Data Series). Elsevier Science Publishing Company, 1985.
Buscar texto completoShields, Andrew, Corinne Varron, Eugenie Charriere-Peroud, Pierre Ardaud, Jean-Marie Bernard, Mike Cowley, Thierry Jeanette et al. Polyurethanes: Waterborne & Solvent Based Surface Coating Resins and Their Applications (Wiley/Sita Series in Surface Coatings Technology). John Wiley & Sons, 1999.
Buscar texto completoCapítulos de libros sobre el tema "Amine solvents"
Liu, Helei, Raphael Idem y Paitoon Tontiwachwuthikul. "Solvent Property of Amine Based Solvents". En SpringerBriefs in Petroleum Geoscience & Engineering, 7–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00922-9_2.
Texto completoCoulier, Yohann, Yohann Coulier, Yohann Coulier, Elise El Ahmar, Jean-Yves Coxam, Jean-Yves Coxam, Elise Provost et al. "New Amine Based Solvents for Acid Gas Removal". En Carbon Dioxide Capture and Acid Gas Injection, 127–45. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118938706.ch7.
Texto completoGoto, K., S. Kodama, H. Okabe y Y. Fujioka. "Energy Performance of New Amine-Based Solvents for CO2Capture from Blast Furnace Gas". En ACS Symposium Series, 317–31. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1097.ch017.
Texto completoTao, Zuyi. "Ion-Exchange Equilibria of Amino Acids". En Ion Exchange and Solvent Extraction, 353–79. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208846-8.
Texto completoOhtake, Satoshi, Yoshiko Kita, Kouhei Tsumoto y Tsutomu Arakawa. "Solvent Interactions with Proteins and Other Macromolecules". En Amino Acids, Peptides and Proteins in Organic Chemistry, 277–360. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631841.ch9.
Texto completoIhara, Yoshinori, Shinji Kurose y Takashi Koyama. "Extraction of Unprotected Amino Acids by Mixed-Ligand Nickel(II) and Copper(II) Chelates". En Highlights in Solute-Solvent Interactions, 197–202. Vienna: Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6151-7_10.
Texto completoMahi, Mohammed-Ridha, Mohammed-Ridha Mahi, Ilham Mokbel, Latifa Négadi y Jacques Jose. "CO2 Capture Using Deep Eutectic Solvent and Amine (MEA) Solution". En Cutting-Edge Technology for Carbon Capture, Utilization, and Storage, 309–16. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119363804.ch21.
Texto completoMcFerran, Neil, Fiona Scott y Brian Walker. "Amino acid activation: Solvent composition for monitoring reaction progress". En Peptides 1992, 296–97. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1470-7_123.
Texto completoPatel, Fenil, Umang Sutariya, Anirban Dey, Bharti Saini y Sweta Balchandani. "Exploration of Amine Based Nanofluids as a Potential Solvent for Post-combustion CO2 Capture". En Energy, Environment, and Sustainability, 187–204. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8599-6_8.
Texto completoYao, Jing, Rosalind M. Wharf y Gregory R. Choppin. "Solvent Extraction of Eu(III) and Am(III) with Thio and Amide Extractants". En Separations of f Elements, 31–42. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1406-4_4.
Texto completoActas de conferencias sobre el tema "Amine solvents"
Ribeiro, Mariana Araújo de Assis, Fernando Luiz Pellegrini Pessoa y Ewerton Emmanuel da Silva Calixto. "COMPARISON AMONG GROUP CONTRIBUTION METHODS FOR AMINE SOLVENTS". En VII Simpósio Internacional de Inovação e Tecnologia. São Paulo: Editora Blucher, 2021. http://dx.doi.org/10.5151/siintec2021-205983.
Texto completoIKPEZE, Victoria Kamnetochi, John Olusoji OWOLABI, Idowu Iyabo OLATEJU y Abdulwahab GIWA. "Modelling and Simulation of Acid Gas Absorption from Natural Gas by Amine Solution Using Aspen HYSYS". En SPE Nigeria Annual International Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/207183-ms.
Texto completoKarunarathne, Sumudu, John Ikechukwu Okoro, Saroj Neupane y Lars Erik Øi. "Density and viscosity correlations of aqueous solvents for amine-based CO2 capture". En 63rd International Conference of Scandinavian Simulation Society, SIMS 2022, Trondheim, Norway, September 20-21, 2022. Linköping University Electronic Press, 2022. http://dx.doi.org/10.3384/ecp192020.
Texto completoKarunarathne, Sumudu, Jeanette Larsen y Lars Erik Øi. "Mathematical Models for Physicochemical Properties of Different Amine-based Solvents in Post combustion CO2 Capture". En 63rd International Conference of Scandinavian Simulation Society, SIMS 2022, Trondheim, Norway, September 20-21, 2022. Linköping University Electronic Press, 2022. http://dx.doi.org/10.3384/ecp192021.
Texto completoZhang, Zhien, Yunfei Yan, Junlei Wang, Li Zhang, Yanrong Chen y Shunxiang Ju. "Analysis of CO2 Capture From Power-Plant Flue Gas Using the Membrane Gas Absorption (MGA) Method". En ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49026.
Texto completoSalais, Clément, Laurent Normand y Christian Streicher. "Optimized CO2 Capture Solutions for Carbon Free Hydrogen Production with Development of New Demixing Solvent Technology DMX™". En Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207875-ms.
Texto completoTola, Vittorio y Matthias Finkenrath. "Low Temperature Heat Recovery Through Integration of Organic Rankine Cycle and CO2 Removal Systems in a NGCC". En ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20324.
Texto completoSultani, Arianna, Michael Rogers y Pedram Nasr. "Development of a Low-cost, Nano-fibrillar Xerogel Network Comprised of Cyclic-di-amino Acids". En 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/qguy6594.
Texto completoNagasawa, Yutaka, Arkadiy P. Yartsev, Keisuke Tominaga y Keitaro Yoshihara. "Chemical Substitution and Deuterium Isotope Effects on Ultrafast Intermolecular Electron Transfer: Possible Role of Molecular Vibrations". En International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.fa.3.
Texto completoVital, Amber, Bradley Doleman y Messiha Saad. "Thermophysical Properties of AS4/3501-6 Carbon-Epoxy Composite". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65186.
Texto completoInformes sobre el tema "Amine solvents"
Winterhalter, C. Experimental Battledress Uniform Fabrics Made from Amine Oxide Solvent Spun Cellulosic Fibers. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2002. http://dx.doi.org/10.21236/ada400546.
Texto completoFisher, Kevin S., Katherine Searcy, Gary T. Rochelle, Sepideh Ziaii y Craig Schubert. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success. Office of Scientific and Technical Information (OSTI), junio de 2007. http://dx.doi.org/10.2172/945367.
Texto completoLay, P. A., N. S. McAlpine, J. T. Hupp, M. J. Weaver y A. M. Sargeson. Solvent-Dependent Redox Thermodynamics of Metal Amine Complexes. The Delineation of Specific Solvation Effects. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1991. http://dx.doi.org/10.21236/ada237503.
Texto completoPoole, Loree Joanne y C. Judson King. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts. Office of Scientific and Technical Information (OSTI), marzo de 1990. http://dx.doi.org/10.2172/937438.
Texto completoHefetz, Abraham y Justin O. Schmidt. Use of Bee-Borne Attractants for Pollination of Nonrewarding Flowers: Model System of Male-Sterile Tomato Flowers. United States Department of Agriculture, octubre de 2003. http://dx.doi.org/10.32747/2003.7586462.bard.
Texto completo