Literatura académica sobre el tema "Aluminum Metallurgy"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Aluminum Metallurgy".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Aluminum Metallurgy"
Hildeman, Gregory J. y Michael J. Koczak. "Aluminum Powder Metallurgy". JOM 38, n.º 8 (agosto de 1986): 30–32. http://dx.doi.org/10.1007/bf03257784.
Texto completoKustov, A. D. y O. G. Parfenov. "High-speed aluminum metallurgy". Doklady Chemistry 462, n.º 2 (junio de 2015): 149–51. http://dx.doi.org/10.1134/s0012500815060075.
Texto completoTakeda, Yoshinobu, Yusuke Odani y Tetsuya Hayashi. "Powder metallurgy of aluminum alloys." Bulletin of the Japan Institute of Metals 27, n.º 10 (1988): 789–96. http://dx.doi.org/10.2320/materia1962.27.789.
Texto completoBolaños-Bernal, Sergio Esteban y Irma Angarita-Moncaleano. "Graphene reinforced aluminum matrix composite obtaining by powder metallurgy". ITECKNE 16, n.º 2 (16 de diciembre de 2019): 18–24. http://dx.doi.org/10.15332/iteckne.v16i2.2353.
Texto completoTAKEDA, Yoshinobu. "A prospect of aluminum powder metallurgy." Journal of Japan Institute of Light Metals 37, n.º 10 (1987): 639–45. http://dx.doi.org/10.2464/jilm.37.639.
Texto completoPramanik, Dipankar. "Aluminum-Based Metallurgy for Global Interconnects". MRS Bulletin 20, n.º 11 (noviembre de 1995): 57–60. http://dx.doi.org/10.1557/s0883769400045590.
Texto completoKulkarni, G. J., D. Banerjee y T. R. Ramachandran. "Physical metallurgy of aluminum-lithium alloys". Bulletin of Materials Science 12, n.º 3-4 (septiembre de 1989): 325–40. http://dx.doi.org/10.1007/bf02747140.
Texto completoDonaldson, I. W. "High Thermal Conductivity Aluminum Powder Metallurgy Materials". Materials Science Forum 783-786 (mayo de 2014): 120–25. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.120.
Texto completoJiang, Z., C. Lucien Falticeanu y I. T. H. Chang. "Warm Compression of Al Alloy PM Blends". Materials Science Forum 534-536 (enero de 2007): 333–36. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.333.
Texto completoTSUCHIDA, Shigeo. "Degassing and consolidation in aluminum powder metallurgy." Journal of Japan Institute of Light Metals 37, n.º 10 (1987): 656–64. http://dx.doi.org/10.2464/jilm.37.656.
Texto completoTesis sobre el tema "Aluminum Metallurgy"
Dimayuga, Francisco Cruz II. "Vacuum refining molten aluminum". Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72810.
Texto completoKülünk, Bahadir. "Kinetics of removal of calcium and sodium by chlorination from aluminum and aluminum-1wt% magnesium alloys". Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39752.
Texto completoIt was demonstrated that the removal of calcium and sodium followed first order reaction kinetics with respect to calcium and sodium concentrations. The removal of the above mentioned elements was represented well by a kinetic model in which mass transfer of sodium and calcium in melt phase was rate limiting.
In the case of the magnesium containing alloys, the MgCl$ sb2$ salt phase that was generated during chlorination was found to have a profound effect on the removal of calcium and sodium. The contribution of the salt phase to the removal of these elements was calculated to reach as high as 60%. In commercial purity aluminum, however, while the major contribution to the removal of calcium was from the chlorine containing gas bubbles, the major contribution to the removal of sodium was calculated to be evaporation of sodium through the melt surface.
Jaansalu, Kevin Michael. "Composites by directed oxidation of aluminum alloys". Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60591.
Texto completoAluminum-magnesium-silicon alloys were oxidized into an alumina bed of either Alcan C-70 UNG power or Struers' 400 grit. The process conditions were optimized in air at 1120$ sp circ$C with a 10% silicon, 2% magnesium alloy. The growth rate was dependent on the powder bed. The material was composed of alumina, silicon, aluminum, and trace amounts of magnesium aluminate spinel. The fracture mode was dependent on the composition of the material and the alumina bed.
Baik, Youngmin. "Carbothermal synthesis of aluminum nitride using sucrose". Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60643.
Texto completoTian, Chenguo. "Filtration of liquid aluminum with reticulated ceramic filters". Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=28932.
Texto completoParameters affecting filtration processes during the initial period were identified, some of which could be quantified numerically using a 2-D computational domain. According to these numerical analyses, the clean filter coefficient for this type of filter was linearly dependent on the dimensionless Stokes velocity of the suspended particles, had a $-$0.96 power dependence on the Peclet number, a $-$6.93 power dependence on the effective porosity of the filter, and exhibited only a weak dependence on the Reynolds number, in the Darcy velocity regime.
The dynamic behaviour of this type of filter was analyzed theoretically and simulated numerically using newly proposed correlations relating the filter coefficient and the pressure drop to the amount of particles captured within the filter (the specific deposit), and a model describing the morphology of captured particles. The simulated results showed that the filtration efficiency and the pressure drop increased with inlet particle concentration and filtration time; these increases were however, insignificant when the inlet particle concentration was less than 1 ppm for filtration periods of two hours, however, when the inlet concentration (initial and continued) reached 10 ppm, the change became appreciable.
Experimental data, obtained from liquid aluminum filtration tests conducted by the author in both laboratory and industrial settings, compared favourably with the numerical results.
Tenekedjiev, Nedeltcho. "Strontium treatment of aluminum : 17% silicon casting alloys". Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61774.
Texto completoHernández, Paz Juan Francisco. "Heat treatment and precipitation in A356 aluminum alloy". Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19547.
Texto completoMoosavi, Khoonsari Elmira. "Reinforced aluminum structure castings for powertrain automotive applications". Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66990.
Texto completoLe renfort des pièces coulées en aluminium par l'assemblage d'insertions ferreuses (systèmes hybrides) permet de combiner la légèreté de l'aluminium avec la rigidité des alliages à base de fer. Cette technique présente donc un grand intérêt pour plusieurs applications, spécialement dans le secteur des transports. Ce projet porte sur les différents aspects technologiques de la coulée de pièces avec joint aluminium-fonte auquel est ajouté une couche intermédiaire (ou revêtement). La procédure expérimentale a consisté à préparer la surface des insertions, à appliquer le revêtement, puis immerger la pièce dans un bain d'aluminium liquide, pour finalement refroidir le système jusqu'à la température de la pièce. Les effets du traitement par flux, de la décarburisation, et des paramètres de revêtement ainsi que la durée d'immersion dans l'aluminium liquide sur la qualité du joint aluminium-fonte ont été étudiés. L'évolution de la microstructure par la formation d'une zone de réaction à l'interface de l'insertion de réaction et zone du revêtement a été déterminée en fonction de la composition du revêtement er du temps d'immersion dans le revêtement liquide, et leurs effets sur les propriétés du joint été évalués. La corrélation entre la microstructure et la microdureté du joint ont a été établie. La décarburisation, le traitement par flux, l'utilisation d'un revêtement approprié et l'optimisation des paramètres du procédé améliorent significativement les propriétés du joint. L'utilisation du revêtement "McGill 2" avec un temps d'immersion dans le bain d'aluminium d'une minute permet la formation d'un joint Al-Fe avec des caractéristiques morphologiques, d'épaisseur, de microdureté et de composition optimisées. Les résultats montrent que l'insertion de pièces formant un joint peut être utilisée pour renforcer les pièces d'aluminium et
Stephen, Gail. "Al-Fe-Si intermetallics in 1000 series aluminum alloys". Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=26424.
Texto completoIn the first part of this study, the conditions at which the intermetallics form, along with the ability of strontium to modify them were investigated. The second part consisted of determining how the morphology of the Al-Fe-Si phases affects the mechanical properties of the worked product. It was found that the formation of the Chinese Script morphology is promoted with increasing cooling rates, Fe/Si ratios and additions of strontium. However, the relative amount of Chinese Script was found to decrease with increasing (Fe+Si) levels. Tensile testing and formability testing (Erichsen ball punch deformation test) revealed that the presence of a Chinese Script morphology of Al-Fe-Si intermetallics (as opposed to the plate-like morphology) imparts no significant beneficial effect on the formability of the final rolled sheet.
Zhang, Chunhui. "Controlled cooling of permanent mold castings of aluminum alloys". Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19619.
Texto completoLibros sobre el tema "Aluminum Metallurgy"
Runge, Jude Mary. The Metallurgy of Anodizing Aluminum. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4.
Texto completoLumley, R. N. Fundamentals of aluminium metallurgy: Production, processing and applications. Oxford: Woodhead Pub., 2011.
Buscar texto completoAluminum recycling. Boca Raton, FL: CRC/Taylor & Francis, 2007.
Buscar texto completoA, Belov N. y Glazoff Michael V, eds. Casting aluminum alloys. Amsterdam: Elsevier Science, 2007.
Buscar texto completoSorrell, Charles A. Aluminum fluxing salts: A critical review of the chemistry and structure of alkali aluminum halides. [Pittsburgh, Pa.]: U.S. Dept. of the Interior, Bureau of Mines, 1986.
Buscar texto completoĖskin, G. I. Physical metallurgy of direct chill casting of aluminum alloys. Boca Raton: Taylor & Francis, 2008.
Buscar texto completoEskin, D. G. Physical metallurgy of direct chill casting of aluminum alloys. Boca Raton: Taylor & Francis, 2008.
Buscar texto completoAltenpohl, Dietrich G. Aluminum: technology, applications, and environment: A profile of a modern metal : aluminum from within. 6a ed. Washington, D.C: The Aluminium Association, Inc., 1998.
Buscar texto completoPovarnit͡sin, Anatoliĭ Aleksandrovich. Nepreryvnoe pressovanie ali͡uminii͡a sposobom "Conform". Ekaterinburg: Avtomatizirovannai͡a laboratorii͡a konstruirovanii͡a sposobov i agregatov nepreryvnoĭ deformat͡sii rastvorov, 1997.
Buscar texto completoAbramov, V. I͡A. Fiziko-khimicheskie osnovy kompleksnoĭ pererabotki ali͡uminievogo syrʹi͡a: Shchelochnye sposoby. Moskva: "Metallurgii͡a", 1985.
Buscar texto completoCapítulos de libros sobre el tema "Aluminum Metallurgy"
Hummert, K., H. Müller y C. Spiegelhauer. "Spray forming: Aluminum alloys". En Powder Metallurgy Data, 258–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10689123_15.
Texto completoRunge, Jude Mary. "Metallurgy Basics for Aluminum Surfaces". En The Metallurgy of Anodizing Aluminum, 191–248. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_4.
Texto completoWoo, S. H., Min Ku Lee y Chang Kyu Rhee. "Synthesis of Aluminum Monohydroxide Nanofiber by Electrolysis of Aluminum Plates". En Progress in Powder Metallurgy, 129–32. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.129.
Texto completoYu, Seung Hoon y Kwang Seon Shin. "Fabrication of Aluminum/Aluminum Nitride Composites by Reactive Mechanical Alloying". En Progress in Powder Metallurgy, 181–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.181.
Texto completoWatanabe, Ryuzo, Duk Sun Choi y Akira Kawasaki. "Gas Chromatographic Analysis of Degassing of Aluminum and Aluminum Alloy Powders". En Progress in Powder Metallurgy, 809–12. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.809.
Texto completoRunge, Jude Mary. "A Brief History of Aluminum and Its Alloys". En The Metallurgy of Anodizing Aluminum, 1–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_1.
Texto completoRunge, Jude Mary. "A Brief History of Anodizing Aluminum". En The Metallurgy of Anodizing Aluminum, 65–148. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_2.
Texto completoRunge, Jude Mary. "Anodizing as an Industrial Process". En The Metallurgy of Anodizing Aluminum, 149–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_3.
Texto completoRunge, Jude Mary. "Anodizing as a Corrosion Process". En The Metallurgy of Anodizing Aluminum, 249–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_5.
Texto completoRunge, Jude Mary. "Anodic Aluminum Oxide Growth and Structure". En The Metallurgy of Anodizing Aluminum, 281–320. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_6.
Texto completoActas de conferencias sobre el tema "Aluminum Metallurgy"
Suprapto, Suprapto, Yatim Lailun Ni’mah, Ita Ulfin, Harmami Harmami, Fredy Kurniawan, Djarot Sugiarso, Hendro Juwono, Kiki Cahayati Hidayatulloh y Gayu Septiandini. "Optimization of aluminum recovery from aluminum smelting waste using the surface response methodology". En PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0002649.
Texto completoEKVALL, J. y D. CHELLMAN. "Ingot metallurgy aluminum - Lithium alloys for aircraft structure". En 27th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-890.
Texto completoDhaneswara, Donanta, Al Fauzan Jannatunnaim Yasfi y Agy Randhiko. "Study of effect partial substitution zirconium silicate and aluminum oxide filler as refractory filler for aluminum casting". En PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001915.
Texto completoKoya, Eitarou, Yoshitoshi Hagiwara, Seishi Miura, Tetsya Hayashi, Toshio Fujiwara y Mineo Onoda. "Development of Aluminum Powder Metallurgy Composites for Cylinder Liners". En International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/940847.
Texto completoRahman, A., N. Zakir y I. Abu-Mahfouz. "Hybrid Aluminum Matrix Composites (HAMCs) Using Powder Metallurgy Method". En MS&T18. MS&T18, 2018. http://dx.doi.org/10.7449/2018mst/2018/mst_2018_1304_1311.
Texto completoRahman, A., N. Zakir y I. Abu-Mahfouz. "Hybrid Aluminum Matrix Composites (HAMCs) Using Powder Metallurgy Method". En MS&T18. MS&T18, 2018. http://dx.doi.org/10.7449/2018/mst_2018_1304_1311.
Texto completo"Influence of Alumina (Al2O3) Nanosized Reinforcements on Dimensional Stability of Pure Aluminum Matrix Nanocomposite". En International Conference on Chemical, Metallurgy and Material Science Engineering. Emirates Research Publishing, 2015. http://dx.doi.org/10.17758/erpub.er815036.
Texto completoCouchman, Kevin y Clem Cousino. "The Processing, Properties, and Applications for Aluminum Powder Metallurgy Materials". En International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/940428.
Texto completoGapusan, Rontgen B., Everjoy S. Mones y Magdaleno R. Vasquez. "Fabrication of transparent conducting aluminum thin film via anodization-etching of thermally evaporated aluminum on glass". En PROCEEDINGS OF THE 4TH INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2020): Accelerating Research and Innovation on Metallurgy and Materials for Inclusive and Sustainable Industry. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059990.
Texto completoIslami, Lazuardi Akmal, Suryo Sembodo y Anawati Anawati. "Anticorrosive behavior of propolis as a green corrosion inhibitor for aluminum". En PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001481.
Texto completoInformes sobre el tema "Aluminum Metallurgy"
Flumerfelt, J. F. Aluminum powder metallurgy processing. Office of Scientific and Technical Information (OSTI), febrero de 1999. http://dx.doi.org/10.2172/348922.
Texto completo