Literatura académica sobre el tema "Aluminoborosilicate glass"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Aluminoborosilicate glass".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Aluminoborosilicate glass"
Malchukova, Eugenia y Bruno Boizot. "Divalent Europium in β-Irradiated Aluminoborosilicate Glass". Journal of the American Ceramic Society 93, n.º 12 (23 de noviembre de 2010): 4005–7. http://dx.doi.org/10.1111/j.1551-2916.2010.04209.x.
Texto completoRuivo, Andreia, Marta Ferro, Suzana M. Andrade, João Rocha, Fernando Pina y César A. T. Laia. "Photoluminescent Nanocrystals in a Multicomponent Aluminoborosilicate Glass". Journal of Physical Chemistry C 120, n.º 43 (21 de octubre de 2016): 24925–31. http://dx.doi.org/10.1021/acs.jpcc.6b04552.
Texto completo�beling, P. V., A. N. Krasnov y V. D. Khaliev. "Composition of lithium aluminoborosilicate glass and abrasive". Glass and Ceramics 53, n.º 3 (marzo de 1996): 88–91. http://dx.doi.org/10.1007/bf01061496.
Texto completoHashikawa, Ryo, Yasuhiro Fujii, Atsushi Kinomura, Takeshi Saito, Arifumi Okada, Takashi Wakasugi y Kohei Kadono. "Radiophotoluminescence phenomenon in copper-doped aluminoborosilicate glass". Journal of the American Ceramic Society 102, n.º 4 (10 de septiembre de 2018): 1642–51. http://dx.doi.org/10.1111/jace.16027.
Texto completoFialko, N. M., V. V. Shchepetov, S. D. Kharchenko, S. I. Kovtun, Ya N. Hladkyi y S. S. Bys. "Nanostructural glasscomposite self-lubricant coatings". Problems of Tribology 27, n.º 4/106 (18 de diciembre de 2022): 6–12. http://dx.doi.org/10.31891/2079-1372-2022-106-4-6-12.
Texto completoSuetsugu, Tatsuya, Takashi Wakasugi y Kohei Kadono. "Effect of glass composition on silver-incorporation into aluminoborosilicate glasses through a staining process". Journal of Materials Research 25, n.º 4 (abril de 2010): 701–7. http://dx.doi.org/10.1557/jmr.2010.0086.
Texto completoSytnik, R. D., I. G. Kiuila, O. A. Ignatyuk y S. A. Sytnik. "Deposition of metal oxide coatings on aluminoborosilicate glass". Glass and Ceramics 51, n.º 2 (febrero de 1994): 60–63. http://dx.doi.org/10.1007/bf00682686.
Texto completoRuivo, Andreia, Suzana M. Andrade, João Rocha, César A. T. Laia y Fernando Pina. "Formation of Photoluminescent Lead Bromide Nanoparticles on Aluminoborosilicate Glass". Journal of Physical Chemistry C 118, n.º 23 (30 de mayo de 2014): 12436–42. http://dx.doi.org/10.1021/jp5003758.
Texto completoSeo, Joobeom, Sangbae Kim, In-Kook Bae y Wantae Kim. "Roasting of pyrophyllite for application in aluminoborosilicate glass production". Geosystem Engineering 23, n.º 3 (24 de enero de 2020): 123–30. http://dx.doi.org/10.1080/12269328.2020.1719904.
Texto completoMorozumi, Hidekatsu, Satoshi Yoshida y Jun Matsuoka. "Composition dependence of crack formation probability in aluminoborosilicate glass". Journal of Non-Crystalline Solids 444 (julio de 2016): 31–37. http://dx.doi.org/10.1016/j.jnoncrysol.2016.04.030.
Texto completoTesis sobre el tema "Aluminoborosilicate glass"
Achigar, Sophie. "Vitrification de déchets nucléaires de démantèlement riches en Mo, P et Zr. Etude structurale et microstructurale de leur incorporation dans un verre aluminoborosilicaté". Electronic Thesis or Diss., Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLC019.
Texto completoThis work belongs to the DEM’N’MELT project, which is dedicated to the vitrification of intermediate or high level radioactive wastes coming from the dismantling of nuclear facilities. The waste compositions of this study, rich in P2O5, MoO3 et ZrO2 which activity is mainly due to 137Cs are close to the ones of the shutdown UP1 facility (Marcoule). Their main feature is the variability of their composition. This work objective is to study the incorporation of these wastes in an aluminoborosilicate glass rich in alkali oxides at 1100 °C.The first part of the study will be dedicated to a system close to the industrial one (11 oxides). It highlights that MoO3 and P2O5 are the main waste constituents responsible for phase separation or crystallization. Moreover, molybdate crystalline phases can contain Cs. ZrO2 is incorporated in the glassy matrix without leading to heterogeneities.Then, a simplified system (6-7 oxides) is studied along with the structural and microstructural incorporation mecanisms of P2O5 and MoO3. These oxides are first considered alone and then added simultaneously. This second study highlights that P et Mo mainly lead to the formation of entities isolated from the glassy network and that their simultaneous addition increases the crystallization tendency
Rehouma, Ferhat. "Étude de l'échange d'ions a l'argent dans un verre aluminoborosilicate : application a un procède d'enterrage sélectif des guides". Grenoble INPG, 1994. http://www.theses.fr/1994INPG0093.
Texto completoCapítulos de libros sobre el tema "Aluminoborosilicate glass"
Malchukova, Eugenia. "Influence of the Doping Ion Nature and Content on Defect Creation Processes under the Effect of Ionizing Radiation in Aluminoborosilicate Glasses". En Recent Techniques and Applications in Ionizing Radiation Research. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92317.
Texto completo"CONCLUSION While cleaned silica-based glass surfaces have similar surface compositions, their susceptibility to strongly adsorbing organic contaminant s depends strongly on the glass composition and the cleaning procedure. For the three glass species exam-ined: silica, aluminoborosilicate, and sodalime glass , the glass surfaces behave similarly after chromic acid cleaning. They show significant differences in their properties followin g a dry cleaning procedure, such as pyrolysis or UV/ozone cleaning. The cleaned silica surfaces show a high susceptibility to adsorbing or-ganic contamination following pyrolysis cleaning, while the pyrolyzed sodalime glass appears to be virtually immune to strongly adsorbing organic molecules. Py-rolyzed aluminoborosilicate glass shows an intermediate susceptibility to adsorb-ing organic contaminants. The chromic acid cleaned glass surfaces all show an in-termediate susceptibility to contamination by adsorbed organic molecules. Thus, it may be an oversimplification to consider a clean glass surface as a high energy substrate that is bound to attract ambient organic contamination. The wettability behavior of the cleaned glass surfaces showed features associ-ated with their exposed chemical functions. The non-dispersive interaction energy between glass and water as a function of pH showed evidence of charging of the surface silanol groups. The point of zero charge for these surface chemical func-tions was observed at pH 3. An estimate of the non-dispersive interaction energy between glass and water at the point of zero charge enables a reasonable estima-tion of the density of surface silanol groups on the cleaned glass. The trends ob-served for the surface charge as a function of pH correlate with the observed sus-ceptibility for adsorbing organic contamination to the cleaned glass surfaces. Charge-adsorbed surfactant monolayers indicated a negative surface charge on the cleaned glass, as expected for silica-based glass surfaces at neutral pH. The wettability of grafted self-assembled octadecylsilane monolayers indicated high quality coatings on the cleaned glass surfaces. The coating quality was identical for all three glass species following chromic acid cleaning. The UV/ozone cleaned glass surfaces showed the highest coating quality on the silica surface, followed by the aluminoborosilicate surface and the sodalime glass surface. The trends in coating quality for all chromic acid cleaned surfaces and UV/ozone cleaned surfaces correlate with those seen for susceptibility to organic contamina-tion of the cleaned glass surfaces exposed to unpurified liquid octane. REFERENCES". En Surface Contamination and Cleaning, 114–16. CRC Press, 2003. http://dx.doi.org/10.1201/9789047403289-17.
Texto completoActas de conferencias sobre el tema "Aluminoborosilicate glass"
Mika, Martin, Milan Patek, Jaroslav Maixner, Simona Randakova y Pavel Hrma. "The Effect of Temperature and Composition on Spinel Concentration and Crystal Size in High-Level Waste Glass". En ASME 2001 8th International Conference on Radioactive Waste Management and Environmental Remediation. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/icem2001-1324.
Texto completo