Artículos de revistas sobre el tema "Alkaline reaction environment"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Alkaline reaction environment".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Nikolaychuk, P. A. "Determination of Partial Reaction Orders of the Reduction of Potassium Permanganate by Ethanol in Various Environments". Herald of the Bauman Moscow State Technical University. Series Natural Sciences, n.º 3 (108) (junio de 2023): 118–30. http://dx.doi.org/10.18698/1812-3368-2023-3-118-130.
Texto completoReddy, K. Chiranjeevi y Kolluru V. L. Subramaniam. "Quantitative phase analysis of slag hydrating in an alkaline environment". Journal of Applied Crystallography 53, n.º 2 (13 de marzo de 2020): 424–34. http://dx.doi.org/10.1107/s1600576720001399.
Texto completoTutolo, Benjamin M., Robert Perrin, Rachel Lauer, Shane Bossaer, Nicholas J. Tosca, Alec Hutchings, Serhat Sevgen et al. "Groundwater-Driven Evolution of Prebiotic Alkaline Lake Environments". Life 14, n.º 12 (7 de diciembre de 2024): 1624. https://doi.org/10.3390/life14121624.
Texto completoWei, Shaohua, Hongpeng Zhang, Haiyan Zhu, Lianyuan Wang, Jing Liang y Zhenxing Cheng. "Study on detoxification property of alkaline-modified MoO42--H2O2 decontaminants against PhSMe under subzero environment". E3S Web of Conferences 267 (2021): 02061. http://dx.doi.org/10.1051/e3sconf/202126702061.
Texto completoKoyama, M., Y. Amano, S. Liu y T. Ishimoto. "Reaction Mechanism of Ethanol Oxidation over Gold Catalyst under Alkaline Environment". ECS Transactions 50, n.º 2 (15 de marzo de 2013): 1907–12. http://dx.doi.org/10.1149/05002.1907ecst.
Texto completoZhao, Wan, Hongshuai Cao, Liting Ruan, Shaoying He, Zhiai Xu y Wen Zhang. "High-performance self-supporting AgCoPO4/CFP for hydrogen evolution reaction under alkaline conditions". RSC Advances 12, n.º 25 (2022): 15751–58. http://dx.doi.org/10.1039/d2ra02621j.
Texto completoKrnel, Kristoffer, Goran Dražič y Tomaž Kosmač. "Degradation of AlN Powder in Aqueous Environments". Journal of Materials Research 19, n.º 4 (abril de 2004): 1157–63. http://dx.doi.org/10.1557/jmr.2004.0150.
Texto completoMendonça Inocêncio, Carlos Victor Mendonça, Claudia Morais y Boniface Kokoh. "Transition Metal Sulfide-Based Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Environment". ECS Meeting Abstracts MA2021-01, n.º 47 (30 de mayo de 2021): 1922. http://dx.doi.org/10.1149/ma2021-01471922mtgabs.
Texto completoFu, Luhong, Shupeng Wang, Junlin Cai, Hongpu Huang, Fulin Yang y Shuifen Xie. "Recent advances in platinum-group-metal based electrocatalysts for alkaline hydrogen oxidation reaction". Chemical Synthesis 3, n.º 4 (2023): 53. http://dx.doi.org/10.20517/cs.2023.53.
Texto completoAn, Lingyun, Chenggong Chang, Fengyun Yan y Jianhong Peng. "Study on the Deterioration Mechanism of Magnesium Oxychloride Cement under an Alkaline Environment". Materials 16, n.º 17 (30 de agosto de 2023): 5924. http://dx.doi.org/10.3390/ma16175924.
Texto completoTian, Gui-Peng, Qian-Yuan Wu, Ang Li, Wen-Long Wang y Hong-Ying Hu. "Enhanced decomposition of 1,4-dioxane in water by ozonation under alkaline condition". Water Science and Technology 70, n.º 12 (30 de octubre de 2014): 1934–40. http://dx.doi.org/10.2166/wst.2014.414.
Texto completoДавтян, В. А. y Г. О. Торосян. "DETECTION AND DETOXICATION OF MALATHION IN THE ENVIRONMENT". Химическая безопасность / Chemical Safety Science 2, n.º 1 (30 de junio de 2018): 220–26. http://dx.doi.org/10.25514/chs.2018.1.12896.
Texto completoHou, Ying Ying, Ming Shuo Geng, Xiang Feng Zeng y Zu Wei Wang. "A New Montmorillonite/Humic Acid Complex Prepared in Alkaline Condition to Remove Cadmium from Waste Water". Applied Mechanics and Materials 522-524 (febrero de 2014): 547–51. http://dx.doi.org/10.4028/www.scientific.net/amm.522-524.547.
Texto completoSingh, Tejpal. "Kinetic study of L-lysine and L-arginine by hexacyanoferrate (III) ion in presence of Os (VIII)". Research Journal of Chemistry and Environment 27, n.º 2 (15 de enero de 2023): 62–72. http://dx.doi.org/10.25303/2702rjce062072.
Texto completoLi, Zhao, Wenhan Niu, Zhenzhong Yang, Abdelkader Kara, Qi Wang, Maoyu Wang, Meng Gu, Zhenxing Feng, Yingge Du y Yang Yang. "Boosting alkaline hydrogen evolution: the dominating role of interior modification in surface electrocatalysis". Energy & Environmental Science 13, n.º 9 (2020): 3110–18. http://dx.doi.org/10.1039/d0ee01750g.
Texto completoGirimonte, Aldo, Andrea Stefani, Clara Mucci, Roberto Giovanardi, Andrea Marchetti, Massimo Innocenti y Claudio Fontanesi. "Electrochemical Performance of Metal-Free Carbon-Based Catalysts from Different Hydrothermal Carbonization Treatments for Oxygen Reduction Reaction". Nanomaterials 14, n.º 2 (12 de enero de 2024): 173. http://dx.doi.org/10.3390/nano14020173.
Texto completoWang, Tingting, Miao Wang, Hao Yang, Mingquan Xu, Chuandong Zuo, Kun Feng, Miao Xie et al. "Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution". Energy & Environmental Science 12, n.º 12 (2019): 3522–29. http://dx.doi.org/10.1039/c9ee01743g.
Texto completoLiu, Tong, Wei Zhang, Tao Chen, Dong Liu, Linlin Cao, Tao Ding, Xiaokang Liu et al. "Regulating the Coordination Environment of Ruthenium Cluster Catalysts for the Alkaline Hydrogen Evolution Reaction". Journal of Physical Chemistry Letters 12, n.º 33 (17 de agosto de 2021): 8016–23. http://dx.doi.org/10.1021/acs.jpclett.1c01936.
Texto completoRani, B. Jansi, G. Ravi, R. Yuvakkumar, S. I. Hong, Dhayalan Velauthapillai, M. Thambidurai, Cuong Dang y B. Saravanakumar. "Neutral and alkaline chemical environment dependent synthesis of Mn3O4 for oxygen evolution reaction (OER)". Materials Chemistry and Physics 247 (junio de 2020): 122864. http://dx.doi.org/10.1016/j.matchemphys.2020.122864.
Texto completoLiu, Zhehao, Hefeng Yuan, Zihao Wan, Zizai Ma, Xiaoyang Deng y Xiaoguang Wang. "Nanostructured Co3O4@NiFe-LDH heterojunction catalysts for improving oxygen evolution reaction in alkaline environment". Journal of Alloys and Compounds 983 (mayo de 2024): 173837. http://dx.doi.org/10.1016/j.jallcom.2024.173837.
Texto completoBuchauer, Fabian Luca, Søren Bredmose Simonsen y Christodoulos Chatzichristodoulou. "Screening of Perovskites as Oxygen Evolution Reaction Catalysts in Alkaline Environment Tested Under Industrially Relevant Conditions". ECS Meeting Abstracts MA2023-01, n.º 36 (28 de agosto de 2023): 2088. http://dx.doi.org/10.1149/ma2023-01362088mtgabs.
Texto completoKočí, V., M. Keppert y R. Černý. "Reaction kinetics of basaltic elements in cementitious matrices: theoretical considerations". Journal of Physics: Conference Series 2628, n.º 1 (1 de octubre de 2023): 012011. http://dx.doi.org/10.1088/1742-6596/2628/1/012011.
Texto completoOzdemir, Ismail, Bahattin Bulbul, Thomas Grund y Thomas Lampke. "Wear and Corrosion Behavior of Cold-Sprayed Cu-10Sn Coatings". Crystals 13, n.º 3 (18 de marzo de 2023): 523. http://dx.doi.org/10.3390/cryst13030523.
Texto completoChen, Lei, Yijia Yin, Linjia Jian, Xianglong Han, Xuefeng Zhao y Donghui Wang. "Enhanced Bactericidal Effect of Calcinated Mg–Fe Layered Double Hydroxide Films Driven by the Fenton Reaction". International Journal of Molecular Sciences 24, n.º 1 (23 de diciembre de 2022): 272. http://dx.doi.org/10.3390/ijms24010272.
Texto completoViola, Veronica, Prince Allah, Priyadharshini Perumal y Michelina Catauro. "Alkali Activation of Metakaolin and Wollastonite: Reducing Sodium Hydroxide Use and Enhancing Gel Formation through Carbonation". Materials 17, n.º 19 (8 de octubre de 2024): 4910. http://dx.doi.org/10.3390/ma17194910.
Texto completoMelar, Jaroslav, Vratislav Bednarik, Roman Slavik y Miroslav Pastorek. "Effect of hydrothermal treatment on the structure of an aluminosilicate polymer". Open Chemistry 11, n.º 5 (1 de mayo de 2013): 782–89. http://dx.doi.org/10.2478/s11532-013-0204-9.
Texto completoLuo, Liuxuan, Cehuang Fu, Shuiyun Shen, Fengjuan Zhu y Junliang Zhang. "Probing structure-designed Cu–Pd nanospheres and their Pt-monolayer-shell derivatives as high-performance electrocatalysts for alkaline and acidic oxygen reduction reactions". Journal of Materials Chemistry A 8, n.º 42 (2020): 22389–400. http://dx.doi.org/10.1039/d0ta05905f.
Texto completoXiao, Peng, Mahasin Alam Sk, Larissa Thia, Xiaoming Ge, Rern Jern Lim, Jing-Yuan Wang, Kok Hwa Lim y Xin Wang. "Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction". Energy Environ. Sci. 7, n.º 8 (2014): 2624–29. http://dx.doi.org/10.1039/c4ee00957f.
Texto completoChen, Zhijie, Xiaoguang Duan, Wei Wei, Shaobin Wang y Bing-Jie Ni. "Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution". Journal of Materials Chemistry A 7, n.º 25 (2019): 14971–5005. http://dx.doi.org/10.1039/c9ta03220g.
Texto completoChoi, Yong-Wook. "Exploring on Stainless Steel Based Electrodes for Oxygen Evolution Reaction Under Alkaline Electrolyte". ECS Meeting Abstracts MA2024-02, n.º 56 (22 de noviembre de 2024): 3754. https://doi.org/10.1149/ma2024-02563754mtgabs.
Texto completoTuan Anh, Le, Nguyen Thuy Ninh, Le Quoc Phong Huu, Le Sinh Hoang y Nguyen Khoa Tan. "Influence of fly ash and blast furnace slag on characteristics of geopolymer non-autoclaved aerated concrete". Transport and Communications Science Journal 72, n.º 1 (25 de enero de 2021): 25–32. http://dx.doi.org/10.47869/tcsj.72.1.4.
Texto completoGuo, Hao, Hyeon-Jung Kim y Sang-Young Kim. "Research on Hydrogen Production by Water Electrolysis Using a Rotating Magnetic Field". Energies 16, n.º 1 (21 de diciembre de 2022): 86. http://dx.doi.org/10.3390/en16010086.
Texto completoAdabi Firouzjaie, Horie, Abolfazl Shakouri, Christopher Williams, John R. Regalbuto, Alexey Serov, William Earl Mustain, Andrea Zitolo, Tristan Asset, Frederic Jaouen y Horie Adabi Firouzjaie. "Multi-Atom PGM Based Catalyst for Highly Efficient Oxygen Reduction Reaction(ORR) and Hydrogen Oxidation Reaction (HOR) in Alkaline Environment". ECS Meeting Abstracts MA2022-02, n.º 39 (9 de octubre de 2022): 1439. http://dx.doi.org/10.1149/ma2022-02391439mtgabs.
Texto completoJalilov, Almaz S. "Activated Vacuum Residue for Efficient Oxygen Reduction Reaction in Alkaline Media". ECS Meeting Abstracts MA2023-02, n.º 54 (22 de diciembre de 2023): 2631. http://dx.doi.org/10.1149/ma2023-02542631mtgabs.
Texto completoYuan, Nan Nan y Jun Hong. "The Research on RhodamineB Degradation in MW/H2O2 System under Alkaline Environment". Applied Mechanics and Materials 105-107 (septiembre de 2011): 1505–8. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.1505.
Texto completoZhang, Bao, Lishang Zhang, Qiuyang Tan, Jinsong Wang, Jia Liu, Houzhao Wan, Ling Miao y Jianjun Jiang. "Simultaneous interfacial chemistry and inner Helmholtz plane regulation for superior alkaline hydrogen evolution". Energy & Environmental Science 13, n.º 9 (2020): 3007–13. http://dx.doi.org/10.1039/d0ee02020f.
Texto completoLiu, Yu, Panpan Li, Zegao Wang y Liangjuan Gao. "Shape–Preserved CoFeNi–MOF/NF Exhibiting Superior Performance for Overall Water Splitting across Alkaline and Neutral Conditions". Materials 17, n.º 10 (7 de mayo de 2024): 2195. http://dx.doi.org/10.3390/ma17102195.
Texto completoBo, Xin, Rosalie K. Hocking, Si Zhou, Yibing Li, Xianjue Chen, Jincheng Zhuang, Yi Du y Chuan Zhao. "Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction". Energy & Environmental Science 13, n.º 11 (2020): 4225–37. http://dx.doi.org/10.1039/d0ee01609h.
Texto completoMancera, C., F. Ferrando, J. Salvadó y N. E. El Mansouri. "Kraft lignin behavior during reaction in an alkaline medium". Biomass and Bioenergy 35, n.º 5 (mayo de 2011): 2072–79. http://dx.doi.org/10.1016/j.biombioe.2011.02.001.
Texto completoSong, Xiaoyun, Qimei Yang, Kaisheng Zou, Zhenyang Xie, Jian Wang y Wei Ding. "Intrinsic Activity: A Critical Challenge of Alkaline Hydrogen Oxidation Reaction". Advanced Functional Materials, 16 de noviembre de 2024. http://dx.doi.org/10.1002/adfm.202414570.
Texto completoXie, Xiaohong, Lei Du, Litao Yan, Sehkyu Park, Yang Qiu, Joshua Sokolowski, Wei Wang y Yuyan Shao. "Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions". Advanced Functional Materials, 13 de marzo de 2022, 2110036. http://dx.doi.org/10.1002/adfm.202110036.
Texto completoXu, Qiang, Leqing Tao, Tengfei Nie, Liang Liang, Yonglu She y Mengsha Wang. "Mechanism of pH Effect on Mass Transfer During Bubble Evolution on Photoelectrode Surfaces". Journal of The Electrochemical Society, 8 de enero de 2024. http://dx.doi.org/10.1149/1945-7111/ad1c18.
Texto completoHou, Liqiang, Zijian Li, Haeseong Jang, Min Gyu Kim, Jaephil Cho, shangguo Liu y Xien Liu. "Grain Boundary Tailors the Local Chemical Environment on Iridium Surface for Alkaline Electrocatalytic Hydrogen Evolution". Angewandte Chemie, 27 de diciembre de 2023. http://dx.doi.org/10.1002/ange.202315633.
Texto completoHou, Liqiang, Zijian Li, Haeseong Jang, Min Gyu Kim, Jaephil Cho, shangguo Liu y Xien Liu. "Grain Boundary Tailors the Local Chemical Environment on Iridium Surface for Alkaline Electrocatalytic Hydrogen Evolution". Angewandte Chemie International Edition, 27 de diciembre de 2023. http://dx.doi.org/10.1002/anie.202315633.
Texto completo"Reaction Mechanism of Ethanol Oxidation over Gold Catalyst under Alkaline Environment". ECS Meeting Abstracts, 2012. http://dx.doi.org/10.1149/ma2012-02/13/1322.
Texto completoMallia, Christopher y Fikile R. Brushett. "Phenomenological observations of quinone-mediated zinc oxidation in an alkaline environment". Chemical Communications, 2024. http://dx.doi.org/10.1039/d4cc02746a.
Texto completoTan, Hao, Bing Tang, Ying Lu, Qianqian Ji, Liyang Lv, Hengli Duan, Na Li et al. "Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction". Nature Communications 13, n.º 1 (19 de abril de 2022). http://dx.doi.org/10.1038/s41467-022-29710-w.
Texto completoBerretti, Enrico, Luigi Osmieri, Vincenzo Baglio, Hamish A. Miller, Jonathan Filippi, Francesco Vizza, Monica Santamaria, Stefania Specchia, Carlo Santoro y Alessandro Lavacchi. "Direct Alcohol Fuel Cells: A Comparative Review of Acidic and Alkaline Systems". Electrochemical Energy Reviews 6, n.º 1 (24 de agosto de 2023). http://dx.doi.org/10.1007/s41918-023-00189-3.
Texto completoSun, Zijun, Rui Li, Qing Xi, Fangxia Xie, Xuan Jian, Xiaoming Gao, Houfen Li et al. "Single atom supported on MXenes for the alkaline hydrogen evolution reaction: species, coordination environment, and action mechanism". Physical Chemistry Chemical Physics, 2023. http://dx.doi.org/10.1039/d3cp00779k.
Texto completoYoo, Su-Hyun, Leonardo Shoji Aota, Sangyong Shin, Ayman A. El-Zoka, Phil Woong Kang, Yonghyuk Lee, Hyunjoo Lee, Se-Ho Kim y Baptiste Gault. "Dopant Evolution in Electrocatalysts after Hydrogen Oxidation Reaction in an Alkaline Environment". ACS Energy Letters, 14 de julio de 2023, 3381–86. http://dx.doi.org/10.1021/acsenergylett.3c00842.
Texto completo