Siga este enlace para ver otros tipos de publicaciones sobre el tema: Algorithmic and combinatorics of monoids.

Artículos de revistas sobre el tema "Algorithmic and combinatorics of monoids"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Algorithmic and combinatorics of monoids".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Cain, Alan J., António Malheiro y Fábio M. Silva. "Combinatorics of patience sorting monoids". Discrete Mathematics 342, n.º 9 (septiembre de 2019): 2590–611. http://dx.doi.org/10.1016/j.disc.2019.05.022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Abbes, S., S. Gouëzel, V. Jugé y J. Mairesse. "Asymptotic combinatorics of Artin–Tits monoids and of some other monoids". Journal of Algebra 525 (mayo de 2019): 497–561. http://dx.doi.org/10.1016/j.jalgebra.2019.01.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

DIEKERT, VOLKER, NICOLE ONDRUSCH y MARKUS LOHREY. "ALGORITHMIC PROBLEMS ON INVERSE MONOIDS OVER VIRTUALLY FREE GROUPS". International Journal of Algebra and Computation 18, n.º 01 (febrero de 2008): 181–208. http://dx.doi.org/10.1142/s0218196708004366.

Texto completo
Resumen
Let G be a finitely generated virtually-free group. We consider the Birget–Rhodes expansion of G, which yields an inverse monoid and which is denoted by IM (G) in the following. We show that for a finite idempotent presentation P, the word problem of a quotient monoid IM (G)/P can be solved in linear time on a RAM. The uniform word problem, where G and the presentation P are also part of the input, is EXPTIME-complete. With IM (G)/P we associate a relational structure, which contains for every rational subset L of IM (G)/P a binary relation, consisting of all pairs (x,y) such that y can be obtained from x by right multiplication with an element from L. We prove that the first-order theory of this structure is decidable. This result implies that the emptiness problem for Boolean combinations of rational subsets of IM (G)/P is decidable, which, in turn implies the decidability of the submonoid membership problem of IM (G)/P. These results were known previously for free groups, only. Moreover, we provide a new algorithmic approach for these problems, which seems to be of independent interest even for free groups. We also show that one cannot expect decidability results in much larger frameworks than virtually-free groups because the subgroup membership problem of a subgroup H in an arbitrary group G can be reduced to a word problem of some IM (G)/P, where P depends only on H. A consequence is that there is a hyperbolic group G and a finite idempotent presentation P such that the word problem is undecidable for some finitely generated submonoid of IM (G)/P. In particular, the word problem of IM (G)/P is undecidable.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hurwitz, Carol M. "On the homotopy theory of monoids". Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 47, n.º 2 (octubre de 1989): 171–85. http://dx.doi.org/10.1017/s1446788700031621.

Texto completo
Resumen
AbsractIn this paper, it is shown that any connected, small category can be embedded in a semi-groupoid (a category in which there is at least one isomorphism between any two elements) in such a way that the embedding includes a homotopy equivalence of classifying spaces. This immediately gives a monoid whose classifying space is of the same homotopy type as that of the small category. This construction is essentially algorithmic, and furthermore, yields a finitely presented monoid whenever the small category is finitely presented. Some of these results are generalizations of ideas of McDuff.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

BLANCHET-SADRI, F. "ALGORITHMIC COMBINATORICS ON PARTIAL WORDS". International Journal of Foundations of Computer Science 23, n.º 06 (septiembre de 2012): 1189–206. http://dx.doi.org/10.1142/s0129054112400473.

Texto completo
Resumen
Algorithmic combinatorics on partial words, or sequences of symbols over a finite alphabet that may have some do-not-know symbols or holes, has been developing in the past few years. Applications can be found, for instance, in molecular biology for the sequencing and analysis of DNA, in bio-inspired computing where partial words have been considered for identifying good encodings for DNA computations, and in data compression. In this paper, we focus on two areas of algorithmic combinatorics on partial words, namely, pattern avoidance and subword complexity. We discuss recent contributions as well as a number of open problems. In relation to pattern avoidance, we classify all binary patterns with respect to partial word avoidability, we classify all unary patterns with respect to hole sparsity, and we discuss avoiding abelian powers in partial words. In relation to subword complexity, we generate and count minimal Sturmian partial words, we construct de Bruijn partial words, and we construct partial words with subword complexities not achievable by full words (those without holes).
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

RENNER, LEX E. "DISTRIBUTION OF PRODUCTS IN FINITE MONOIDS I: COMBINATORICS". International Journal of Algebra and Computation 09, n.º 06 (diciembre de 1999): 693–708. http://dx.doi.org/10.1142/s0218196799000394.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Okniński, Jan y Magdalena Wiertel. "Combinatorics and structure of Hecke–Kiselman algebras". Communications in Contemporary Mathematics 22, n.º 07 (15 de junio de 2020): 2050022. http://dx.doi.org/10.1142/s0219199720500224.

Texto completo
Resumen
Hecke–Kiselman monoids [Formula: see text] and their algebras [Formula: see text], over a field [Formula: see text], associated to finite oriented graphs [Formula: see text] are studied. In the case [Formula: see text] is a cycle of length [Formula: see text], a hierarchy of certain unexpected structures of matrix type is discovered within the monoid [Formula: see text] and this hierarchy is used to describe the structure and the properties of the algebra [Formula: see text]. In particular, it is shown that [Formula: see text] is a right and left Noetherian algebra, while it has been known that it is a PI-algebra of Gelfand–Kirillov dimension one. This is used to characterize all Noetherian algebras [Formula: see text] in terms of the graphs [Formula: see text]. The strategy of our approach is based on the crucial role played by submonoids of the form [Formula: see text] in combinatorics and structure of arbitrary Hecke–Kiselman monoids [Formula: see text].
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

ROSALES, J. C., P. A. GARCÍA-SÁNCHEZ y J. I. GARCÍA-GARCÍA. "PRESENTATIONS OF FINITELY GENERATED SUBMONOIDS OF FINITELY GENERATED COMMUTATIVE MONOIDS". International Journal of Algebra and Computation 12, n.º 05 (octubre de 2002): 659–70. http://dx.doi.org/10.1142/s021819670200105x.

Texto completo
Resumen
We give an algorithmic method for computing a presentation of any finitely generated submonoid of a finitely generated commutative monoid. We use this method also for calculating the intersection of two congruences on ℕp and for deciding whether or not a given finitely generated commutative monoid is t-torsion free and/or separative. The last section is devoted to the resolution of some simple equations on a finitely generated commutative monoid.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Garg, Vijay K. "Algorithmic combinatorics based on slicing posets". Theoretical Computer Science 359, n.º 1-3 (agosto de 2006): 200–213. http://dx.doi.org/10.1016/j.tcs.2006.03.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Polo, Harold. "Approximating length-based invariants in atomic Puiseux monoids". Algebra and Discrete Mathematics 33, n.º 1 (2022): 128–39. http://dx.doi.org/10.12958/adm1760.

Texto completo
Resumen
A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization invariants of these two classes of monoids are related through a limiting process. This allows us to extend results from numerical to Puiseux monoids. We illustrate the versatility of this technique by recovering various known results about Puiseux monoids.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Li, Weimin. "Graphs with regular monoids". Discrete Mathematics 265, n.º 1-3 (abril de 2003): 105–18. http://dx.doi.org/10.1016/s0012-365x(02)00625-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Tsaranov, S. V. "Representation and Classification of Coxeter Monoids". European Journal of Combinatorics 11, n.º 2 (marzo de 1990): 189–204. http://dx.doi.org/10.1016/s0195-6698(13)80073-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Šunić, Zoran. "Tamari lattices, forests and Thompson monoids". European Journal of Combinatorics 28, n.º 4 (mayo de 2007): 1216–38. http://dx.doi.org/10.1016/j.ejc.2006.02.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Humphries, Stephen P. y Zane Kun Li. "Counting powers of words in monoids". European Journal of Combinatorics 30, n.º 5 (julio de 2009): 1297–308. http://dx.doi.org/10.1016/j.ejc.2008.10.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kabil, Mustapha, Maurice Pouzet y Ivo G. Rosenberg. "Free monoids and generalized metric spaces". European Journal of Combinatorics 80 (agosto de 2019): 339–60. http://dx.doi.org/10.1016/j.ejc.2018.02.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Ayyer, Arvind, Anne Schilling, Benjamin Steinberg y Nicolas M. Thiéry. "Markov chains, ${\mathscr R}$-trivial monoids and representation theory". International Journal of Algebra and Computation 25, n.º 01n02 (febrero de 2015): 169–231. http://dx.doi.org/10.1142/s0218196715400081.

Texto completo
Resumen
We develop a general theory of Markov chains realizable as random walks on [Formula: see text]-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via Möbius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom–Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Magid, Andy. "Differential Brauer monoids". Proceedings of the American Mathematical Society, Series B 10, n.º 13 (12 de abril de 2023): 153–65. http://dx.doi.org/10.1090/bproc/162.

Texto completo
Resumen
The differential Brauer monoid of a differential commutative ring R R is defined. Its elements are the isomorphism classes of differential Azumaya R R algebras with operation from tensor product subject to the relation that two such algebras are equivalent if matrix algebras over them, with entry-wise differentiation, are differentially isomorphic. The fine Bauer monoid, which is a group, is the same thing without the differential requirement. The differential Brauer monoid is then determined from the fine Brauer monoids of R R and R D R^D and the submonoid of the Brauer monoid whose underlying Azumaya algebras are matrix rings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Fan, Yushuang y Salvatore Tringali. "Power monoids: A bridge between factorization theory and arithmetic combinatorics". Journal of Algebra 512 (octubre de 2018): 252–94. http://dx.doi.org/10.1016/j.jalgebra.2018.07.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Zohre, Khaki, Saan Hossein Mohammadzadeh y Nouri Leila. "Characterization of monoids by condition (P_E)". Quasigroups and Related Systems 30, n.º 1(47) (mayo de 2022): 91–100. http://dx.doi.org/10.56415/qrs.v30.07.

Texto completo
Resumen
In this paper first we recall condition (PE) and then will give general properties and a characterization of monoids for which all right acts satisfy this condition. Finally, we give a characterization of monoids, by comparing this property of their acts with some others.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Kauers, Manuel, Peter Paule y Greg Reid. "Workshop on Symbolic Combinatorics and Algorithmic Differential Algebra". ACM Communications in Computer Algebra 50, n.º 1/2 (28 de septiembre de 2016): 27–34. http://dx.doi.org/10.1145/3003653.3003658.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kauers, Manuel, Peter Paule y Greg Reid. "Workshop on symbolic combinatorics and algorithmic differential algebra". ACM Communications in Computer Algebra 50, n.º 1 (27 de abril de 2016): 27–34. http://dx.doi.org/10.1145/2930964.2930968.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Lee, Seung-Joo. "Combinatorics inN=1Heterotic Vacua". Advances in High Energy Physics 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/397895.

Texto completo
Resumen
We briefly review an algorithmic strategy to explore the landscape of heteroticE8×E8vacua, in the context of compactifying smooth Calabi-Yau threefolds with vector bundles. The Calabi-Yau threefolds are algebraically realised as hypersurfaces in toric varieties, and a large class of vector bundles are constructed thereon as monads. In the spirit of searching for standard-like heterotic vacua, emphasis is placed on the integer combinatorics of the model-building programme.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Ateş, Fırat, Eylem G. Karpuz, Canan Kocapınar y A. Sinan Çevik. "Gröbner–Shirshov bases of some monoids". Discrete Mathematics 311, n.º 12 (junio de 2011): 1064–71. http://dx.doi.org/10.1016/j.disc.2011.03.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Baginová Jajcayová, Tatiana. "Schützenberger automata for HNN-extensions of inverse monoids and their use in algorithmic questions". Information and Computation 269 (diciembre de 2019): 104448. http://dx.doi.org/10.1016/j.ic.2019.104448.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Kambites, Mark. "Retracts of trees and free left adequate semigroups". Proceedings of the Edinburgh Mathematical Society 54, n.º 3 (17 de agosto de 2011): 731–47. http://dx.doi.org/10.1017/s0013091509001230.

Texto completo
Resumen
AbstractRecent research of the author has studied edge-labelled directed trees under a natural multiplication operation. The class of all such trees (with a fixed labelling alphabet) has an algebraic interpretation, as a free object in the class of adequate semigroups. We consider here a natural subclass of these trees, defined by placing a restriction on edge orientations, and show that the resulting algebraic structure is a free object in the class of left adequate semigroups. Through this correspondence we establish some structural and algorithmic properties of free left adequate semigroups and monoids, and consequently of the category of all left adequate semigroups.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

MARKUS-EPSTEIN, L. "STALLINGS FOLDINGS AND SUBGROUPS OF AMALGAMS OF FINITE GROUPS". International Journal of Algebra and Computation 17, n.º 08 (diciembre de 2007): 1493–535. http://dx.doi.org/10.1142/s0218196707003846.

Texto completo
Resumen
Stallings showed that every finitely generated subgroup of a free group is canonically represented by a finite minimal immersion of a bouquet of circles. In terms of the theory of automata, this is a minimal finite inverse automaton. This allows for the deep algorithmic theory of finite automata and finite inverse monoids to be used to answer questions about finitely generated subgroups of free groups. In this paper, we attempt to apply the same methods to other classes of groups. A fundamental new problem is that the Stallings folding algorithm must be modified to allow for "sewing" on relations of non-free groups. We look at the class of groups that are amalgams of finite groups. It is known that these groups are locally quasiconvex and thus, all finitely generated subgroups are represented by finite automata. We present an algorithm to compute such a finite automaton and use it to solve various algorithmic problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

AKER, KÜRŞAT, MAHIR BILEN CAN y MÜGE TAŞKIN. "R-POLYNOMIALS OF FINITE MONOIDS OF LIE TYPE". International Journal of Algebra and Computation 20, n.º 06 (septiembre de 2010): 793–805. http://dx.doi.org/10.1142/s0218196710005893.

Texto completo
Resumen
This paper studies the combinatorics of the orbit Hecke algebras associated with W × W orbits in the Renner monoid of a finite monoid of Lie type, M, where W is the Weyl group associated with M. It is shown by Putcha in [12] that the Kazhdan–Lusztig involution [6] can be extended to the orbit Hecke algebra which enables one to define the R-polynomials of the intervals contained in a given orbit. Using the R-polynomials, we calculate the Möbius function of the Bruhat–Chevalley ordering on the orbits. Furthermore, we provide a necessary condition for an interval contained in a given orbit to be isomorphic to an interval in some Weyl group.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Chang, Ching-Lueh. "Hardness of learning loops, monoids, and semirings". Discrete Applied Mathematics 162 (enero de 2014): 149–58. http://dx.doi.org/10.1016/j.dam.2013.08.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Nathanson, Melvyn B. "Free monoids and forests of rational numbers". Discrete Applied Mathematics 216 (enero de 2017): 662–69. http://dx.doi.org/10.1016/j.dam.2015.07.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Putcha, Mohan S. "Bruhat-Chevalley Order in Reductive Monoids". Journal of Algebraic Combinatorics 20, n.º 1 (julio de 2004): 33–53. http://dx.doi.org/10.1023/b:jaco.0000047291.42015.a6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Flores, Ramón y Juan González-Meneses. "On lexicographic representatives in braid monoids". Journal of Algebraic Combinatorics 52, n.º 4 (30 de octubre de 2019): 561–97. http://dx.doi.org/10.1007/s10801-019-00913-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Krob, Daniel, Jean Mairesse y Ioannis Michos. "Computing the average parallelism in trace monoids". Discrete Mathematics 273, n.º 1-3 (diciembre de 2003): 131–62. http://dx.doi.org/10.1016/s0012-365x(03)00233-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Giscard, P. L. y P. Rochet. "Algebraic Combinatorics on Trace Monoids: Extending Number Theory to Walks on Graphs". SIAM Journal on Discrete Mathematics 31, n.º 2 (enero de 2017): 1428–53. http://dx.doi.org/10.1137/15m1054535.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Cain, Alan J. y António Malheiro. "Combinatorics of cyclic shifts in plactic, hypoplactic, sylvester, Baxter, and related monoids". Journal of Algebra 535 (octubre de 2019): 159–224. http://dx.doi.org/10.1016/j.jalgebra.2019.06.025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Cieliebak, Mark, Thomas Erlebach, Zsuzsanna Lipták, Jens Stoye y Emo Welzl. "Algorithmic complexity of protein identification: combinatorics of weighted strings". Discrete Applied Mathematics 137, n.º 1 (febrero de 2004): 27–46. http://dx.doi.org/10.1016/s0166-218x(03)00187-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Cardinal, Jean, Erik D. Demaine, Martin L. Demaine, Shinji Imahori, Tsuyoshi Ito, Masashi Kiyomi, Stefan Langerman, Ryuhei Uehara y Takeaki Uno. "Algorithmic Folding Complexity". Graphs and Combinatorics 27, n.º 3 (17 de marzo de 2011): 341–51. http://dx.doi.org/10.1007/s00373-011-1019-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Goode, Elizabeth y Dennis Pixton. "Recognizing splicing languages: Syntactic monoids and simultaneous pumping". Discrete Applied Mathematics 155, n.º 8 (abril de 2007): 989–1006. http://dx.doi.org/10.1016/j.dam.2006.10.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Coleman, Thomas D. H., David M. Evans y Robert D. Gray. "Permutation monoids and MB-homogeneity for graphs and relational structures". European Journal of Combinatorics 78 (mayo de 2019): 163–89. http://dx.doi.org/10.1016/j.ejc.2019.02.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Ebanks, Bruce. "Some generalized quadratic functional equations on monoids". Aequationes mathematicae 94, n.º 4 (5 de noviembre de 2019): 737–47. http://dx.doi.org/10.1007/s00010-019-00690-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Rybalov, Alexander Nikolaevich. "On generic complexity of the subset sum problem in monoids and groups of integer matrix of order two". Herald of Omsk University 25, n.º 4 (28 de diciembre de 2020): 10–15. http://dx.doi.org/10.24147/1812-3996.2020.25(4).10-15.

Texto completo
Resumen
Generic-case approach to algorithmic problems was suggested by A. Miasnikov, I. Kapovich, P. Schupp and V. Shpilrain in 2003. This approach studies behavior of an algo-rithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we prove that the subset sum problems for the monoid of integer positive unimodular matrices of the second order, the special linear group of the second order, and the modular group are generically solvable in polynomial time.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

White, Jacob A. "Coloring complexes and combinatorial Hopf monoids". Journal of Combinatorial Theory, Series A 194 (febrero de 2023): 105698. http://dx.doi.org/10.1016/j.jcta.2022.105698.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Dvurečenskij, Anatolij y Jiří Rachůnek. "Probabilistic averaging in bounded commutative residuated ℓ-monoids". Discrete Mathematics 306, n.º 13 (julio de 2006): 1317–26. http://dx.doi.org/10.1016/j.disc.2005.12.024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Ahmed, Chwas, Paul Martin y Volodymyr Mazorchuk. "On the number of principal ideals in d-tonal partition monoids". Annals of Combinatorics 25, n.º 1 (8 de enero de 2021): 79–113. http://dx.doi.org/10.1007/s00026-020-00518-z.

Texto completo
Resumen
AbstractFor a positive integer d, a non-negative integer n and a non-negative integer $$h\le n$$ h ≤ n , we study the number $$C_{n}^{(d)}$$ C n ( d ) of principal ideals; and the number $$C_{n,h}^{(d)}$$ C n , h ( d ) of principal ideals generated by an element of rank h, in the d-tonal partition monoid on n elements. We compute closed forms for the first family, as partial cumulative sums of known sequences. The second gives an infinite family of new integral sequences. We discuss their connections to certain integral lattices as well as to combinatorics of partitions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wiertel, Magdalena. "Irreducible representations of Hecke–Kiselman monoids". Linear Algebra and its Applications 640 (mayo de 2022): 12–33. http://dx.doi.org/10.1016/j.laa.2022.01.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Chapman, Scott T., Rolf Hoyer y Nathan Kaplan. "Delta sets of numerical monoids are eventually periodic". Aequationes mathematicae 77, n.º 3 (junio de 2009): 273–79. http://dx.doi.org/10.1007/s00010-008-2948-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Sabour, Kh, B. Fadli y S. Kabbaj. "Wilson’s functional equation on monoids with involutive automorphisms". Aequationes mathematicae 90, n.º 5 (26 de agosto de 2016): 1001–11. http://dx.doi.org/10.1007/s00010-016-0435-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Bessy, S. y D. Rautenbach. "Algorithmic aspects of broadcast independence". Discrete Applied Mathematics 314 (junio de 2022): 142–49. http://dx.doi.org/10.1016/j.dam.2022.03.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Bodlaender, Hans L. "The algorithmic theory of treewidth". Electronic Notes in Discrete Mathematics 5 (julio de 2000): 27–30. http://dx.doi.org/10.1016/s1571-0653(05)80116-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Dourado, Mitre C., Fábio Protti y Jayme L. Szwarcfiter. "Algorithmic Aspects of Monophonic Convexity". Electronic Notes in Discrete Mathematics 30 (febrero de 2008): 177–82. http://dx.doi.org/10.1016/j.endm.2008.01.031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

DIEKERT, VOLKER y ALEXEI MYASNIKOV. "GROUP EXTENSIONS OVER INFINITE WORDS". International Journal of Foundations of Computer Science 23, n.º 05 (agosto de 2012): 1001–19. http://dx.doi.org/10.1142/s0129054112400424.

Texto completo
Resumen
Non-Archimedean words have been introduced as a new type of infinite words which can be investigated through classical methods in combinatorics on words due to a length function. The length function, however, takes values in the additive group of polynomials ℤ[t] (and not, as traditionally, in ℕ), which yields various new properties. Non-Archimedean words allow to solve a number of interesting algorithmic problems in geometric and algorithmic group theory. There is also a connection to logic and the first-order theory in free groups (Tarski Problems). In the present paper we provide a general method to use infinite words over a discretely ordered abelian group as a tool to investigate certain group extensions for an arbitrary group G. The central object is a group E (A, G) which is defined in terms of a non-terminating, but confluent rewriting system. The groupG as well as some natural HNN-extensions of G embed into E (A, G) (and still "behave like" G), which makes it interesting to study its algorithmic properties. In order to show that every group G embeds into E (A, G) we combine methods from combinatorics on words, string rewriting and group theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía