Literatura académica sobre el tema "Algebraic number theory"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Algebraic number theory".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Algebraic number theory"

1

Blackmore, G. W., I. N. Stewart y D. O. Tall. "Algebraic Number Theory". Mathematical Gazette 73, n.º 463 (marzo de 1989): 65. http://dx.doi.org/10.2307/3618234.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

S., R. y Michael E. Pohst. "Computational Algebraic Number Theory." Mathematics of Computation 64, n.º 212 (octubre de 1995): 1763. http://dx.doi.org/10.2307/2153389.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Karve, Aneesh y Sebastian Pauli. "GiANT: Graphical Algebraic Number Theory". Journal de Théorie des Nombres de Bordeaux 18, n.º 3 (2006): 721–27. http://dx.doi.org/10.5802/jtnb.569.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lenstra Jr., H. W. "Algorithms in Algebraic Number Theory". Bulletin of the American Mathematical Society 26, n.º 2 (1 de octubre de 1992): 211–45. http://dx.doi.org/10.1090/s0273-0979-1992-00284-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Platonov, V. P. y A. S. Rapinchuk. "Algebraic groups and number theory". Russian Mathematical Surveys 47, n.º 2 (30 de abril de 1992): 133–61. http://dx.doi.org/10.1070/rm1992v047n02abeh000879.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Appleby, Marcus, Steven Flammia, Gary McConnell y Jon Yard. "SICs and Algebraic Number Theory". Foundations of Physics 47, n.º 8 (24 de abril de 2017): 1042–59. http://dx.doi.org/10.1007/s10701-017-0090-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Belabas, Karim. "Topics in computational algebraic number theory". Journal de Théorie des Nombres de Bordeaux 16, n.º 1 (2004): 19–63. http://dx.doi.org/10.5802/jtnb.433.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Schoof, Ren\'e. "Book Review: Algorithmic algebraic number theory". Bulletin of the American Mathematical Society 29, n.º 1 (1 de julio de 1993): 111–14. http://dx.doi.org/10.1090/s0273-0979-1993-00392-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Krishna, Amalendu y Jinhyun Park. "Algebraic cobordism theory attached to algebraic equivalence". Journal of K-Theory 11, n.º 1 (febrero de 2013): 73–112. http://dx.doi.org/10.1017/is013001028jkt210.

Texto completo
Resumen
AbstractBased on the algebraic cobordism theory of Levine and Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence.We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the semi-topological K0-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory.We compute our cobordism theory for some low dimensional varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Cremona, J. E. y Henri Cohen. "A Course in Computational Algebraic Number Theory". Mathematical Gazette 78, n.º 482 (julio de 1994): 221. http://dx.doi.org/10.2307/3618596.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Algebraic number theory"

1

Röttger, Christian Gottfried Johannes. "Counting problems in algebraic number theory". Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327407.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Swanson, Colleen M. "Algebraic number fields and codes /". Connect to online version, 2006. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2006/172.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hughes, Garry. "Distribution of additive functions in algebraic number fields". Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09SM/09smh893.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

McCoy, Daisy Cox. "Irreducible elements in algebraic number fields". Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39950.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Gaertner, Nathaniel Allen. "Special Cases of Density Theorems in Algebraic Number Theory". Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33153.

Texto completo
Resumen
This paper discusses the concepts in algebraic and analytic number theory used in the proofs of Dirichlet's and Cheboterev's density theorems. It presents special cases of results due to the latter theorem for which greatly simplified proofs exist.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

PASINI, FEDERICO WILLIAM. "Classifying spaces for knots: new bridges between knot theory and algebraic number theory". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/129230.

Texto completo
Resumen
In this thesis we discuss how, in the context of knot theory, the classifying space of a knot group for the family of meridians arises naturally. We provide an explicit construction of a model for that space, which is particularly nice in the case of a prime knot. We then show that this classifying space controls the behaviour of the finite branched coverings of the knot. We present a 9-term exact sequence for knot groups that strongly resembles the Poitou-Tate exact sequence for algebraic number fields. Finally, we show that the homology of the classifying space behaves towards the former sequence as Shafarevich groups do towards the latter.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Rozario, Rebecca. "The Distribution of the Irreducibles in an Algebraic Number Field". Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/RozarioR2003.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Nyqvist, Robert. "Algebraic Dynamical Systems, Analytical Results and Numerical Simulations". Doctoral thesis, Växjö : Växjö University Press, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1142.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Yan, Song Yuan. "On the algebraic theories and computations of amicable numbers". Thesis, University of York, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284133.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Haydon, James Henri. "Étale homotopy sections of algebraic varieties". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c.

Texto completo
Resumen
We define and study the fundamental pro-finite 2-groupoid of varieties X defined over a field k. This is a higher algebraic invariant of a scheme X, analogous to the higher fundamental path 2-groupoids as defined for topological spaces. This invariant is related to previously defined invariants, for example the absolute Galois group of a field, and Grothendieck’s étale fundamental group. The special case of Brauer-Severi varieties is considered, in which case a “sections conjecture” type theorem is proved. It is shown that a Brauer-Severi variety X has a rational point if and only if its étale fundamental 2-groupoid has a special sort of section.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Algebraic number theory"

1

Weiss, Edwin. Algebraic number theory. Mineola, N.Y: Dover Publications, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Fr"ohlich, A. Algebraic number theory. Cambridge: C.U.P., 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Koch, H. Algebraic Number Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58095-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lang, Serge. Algebraic Number Theory. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4684-0296-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Neukirch, Jürgen. Algebraic Number Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03983-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Jarvis, Frazer. Algebraic Number Theory. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07545-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lang, Serge. Algebraic Number Theory. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0853-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Orme, Tall David, ed. Algebraic number theory. 2a ed. London: Chapman and Hall, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Martin, Taylor, ed. Algebraic number theory. Cambridge: Cambridge University Press, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mollin, Richard A. Algebraic number theory. Boca Raton, Fla: CRC Press, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Algebraic number theory"

1

Geroldinger, Alfred. "Factorizations of algebraic integers". En Number Theory, 63–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0086545.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ireland, Kenneth y Michael Rosen. "Algebraic Number Theory". En A Classical Introduction to Modern Number Theory, 172–87. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-2103-4_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Stillwell, John. "Algebraic Number Theory". En Undergraduate Texts in Mathematics, 404–30. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4684-9281-1_21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Stillwell, John. "Algebraic Number Theory". En Undergraduate Texts in Mathematics, 439–66. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6053-5_21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Weil, André. "Algebraic number-fields". En Basic Number Theory, 80–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61945-8_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Fine, Benjamin y Gerhard Rosenberger. "Primes and Algebraic Number Theory". En Number Theory, 285–370. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43875-7_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kolmogorov, A. N. y A. P. Yushkevich. "Algebra and Algebraic Number Theory". En Mathematics of the 19th Century, 35–135. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8293-4_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bashmakova, I. G. y A. N. Rudakov. "Algebra and Algebraic Number Theory". En Mathematics of the 19th Century, 35–135. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-5112-1_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bourbaki, Nicolas. "Commutative Algebra. Algebraic Number Theory". En Elements of the History of Mathematics, 93–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-61693-8_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Koch, H. "Basic Number Theory". En Algebraic Number Theory, 8–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58095-6_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Algebraic number theory"

1

Lam, S. P. y K. P. Shum. "Algebraic Structures and Number Theory". En First International Symposium on Algebraic Structures and Number Theory. WORLD SCIENTIFIC, 1990. http://dx.doi.org/10.1142/9789814540209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Huang, Yu-Chih. "Lattice index codes from algebraic number fields". En 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 2015. http://dx.doi.org/10.1109/isit.2015.7282903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

van Dam, Wim y Yoshitaka Sasaki. "QUANTUM ALGORITHMS FOR PROBLEMS IN NUMBER THEORY, ALGEBRAIC GEOMETRY, AND GROUP THEORY". En Summer School on Diversities in Quantum Computation/Information. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814425988_0003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tsuboi, Shoji. "The Euler number of the normalization of an algebraic threefold with ordinary singularities". En Geometric Singularity Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Feng, Ke-Qin y Ke-Zheng Li. "Proceedings of the Special Program at Nankai Institute of Mathematics ALGEBRAIC GEOMETRY and ALGEBRAIC NUMBER THEORY". En Special Program at Nankai Institute of Mathematics. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814537681.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Limniotis, Konstantinos, Nicholas Kolokotronis y Nicholas Kalouptsidis. "Constructing Boolean functions in odd number of variables with maximum algebraic immunity". En 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6034059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Xiaowen Xiong, Xia Yang y Chi Ma. "Analysis of the number of even-variable boolean functions with maximum algebraic immunity". En Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.1869.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Suleimenov, Ibragim E. y Dinara K. Matrassulova. "Using the Relationship between the Theory of Algebraic Fields and Number Theory for Developing Promising Methods of Digital Signal Processing". En 2022 3rd Asia Conference on Computers and Communications (ACCC). IEEE, 2022. http://dx.doi.org/10.1109/accc58361.2022.00027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Alekseev, Yaroslav, Dima Grigoriev, Edward A. Hirsch y Iddo Tzameret. "Semi-algebraic proofs, IPS lower bounds, and the τ-conjecture: can a natural number be negative?" En STOC '20: 52nd Annual ACM SIGACT Symposium on Theory of Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3357713.3384245.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Li, Z. X., B. Kang, J. B. Gou, Y. X. Chu y M. Yeung. "Fundamentals of Workpiece Localization: Theory and Algorithms". En ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0811.

Texto completo
Resumen
Abstract In this paper, we present an algebraic algorithm for workpiece localization. First, we formulate the problem as a least-square problem in the configuration space Q = SE(3) × ℝ3n, where SE(3) is the Euclidean group, and n is the number of measurement points to be matched by corresponding home surface points of the workpiece. Then, we use the geometric properties of the Euclidean group to compute for the critical points of the objective function. Doing so we derive an algebraic formula for the optimal Euclidean transformation in terms of the measurement points and the corresponding home surface points. We also give for each measurement point a system of two nonlinear equations from which the corresponding home surface point nearest to the measurement point can be solved. Finally, based on these analytic results we present an iterative algorithm for obtaining the complete solution of the least-square problem.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Algebraic number theory"

1

Xia, Xiang-Gen. Space-Time Coding Using Algebraic Number Theory for Broadband Wireless Communications. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2008. http://dx.doi.org/10.21236/ada483791.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sultanov, S. R. Electronic textbook " Algebra and number theory. Part 2 "direction of training 02.03.03" Mathematical support and administration of information systems". OFERNIO, junio de 2018. http://dx.doi.org/10.12731/ofernio.2018.23685.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía