Siga este enlace para ver otros tipos de publicaciones sobre el tema: Algebraic fields.

Artículos de revistas sobre el tema "Algebraic fields"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Algebraic fields".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

JARDEN, MOSHE y ALEXANDRA SHLAPENTOKH. "DECIDABLE ALGEBRAIC FIELDS". Journal of Symbolic Logic 82, n.º 2 (junio de 2017): 474–88. http://dx.doi.org/10.1017/jsl.2017.10.

Texto completo
Resumen
AbstractWe discuss the connection between decidability of a theory of a large algebraic extensions of ${\Bbb Q}$ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ${\Bbb Q}$ has a decidable existential theory, then within any fixed algebraic closure $\widetilde{\Bbb Q}$ of ${\Bbb Q}$, the field K must be conjugate over ${\Bbb Q}$ to a field which is recursive as a subset of the algebraic closure. We also show that for each positive integer e there are infinitely many e-tuples $\sigma \in {\text{Gal}}\left( {\Bbb Q} \right)^e $ such that the field $\widetilde{\Bbb Q}\left( \sigma \right)$ is primitive recursive in $\widetilde{\Bbb Q}$ and its elementary theory is primitive recursively decidable. Moreover, $\widetilde{\Bbb Q}\left( \sigma \right)$ is PAC and ${\text{Gal}}\left( {\widetilde{\Bbb Q}\left( \sigma \right)} \right)$ is isomorphic to the free profinite group on e generators.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kuz'min, L. V. "Algebraic number fields". Journal of Soviet Mathematics 38, n.º 3 (agosto de 1987): 1930–88. http://dx.doi.org/10.1007/bf01093434.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Praeger, Cheryl E. "Kronecker classes of fields and covering subgroups of finite groups". Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 57, n.º 1 (agosto de 1994): 17–34. http://dx.doi.org/10.1017/s1446788700036028.

Texto completo
Resumen
AbstractKronecker classes of algebraci number fields were introduced by W. Jehne in an attempt to understand the extent to which the structure of an extension K: k of algebraic number fields was influenced by the decomposition of primes of k over K. He found an important link between Kronecker equivalent field extensions and a certain covering property of their Galois groups. This surveys recent contributions of Group Theory to the understanding of Kronecker equivalence of algebraic number fields. In particular some group theoretic conjectures related to the Kronecker class of an extension of bounded degree are explored.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chudnovsky, D. V. y G. V. Chudnovsky. "Algebraic complexities and algebraic curves over finite fields". Journal of Complexity 4, n.º 4 (diciembre de 1988): 285–316. http://dx.doi.org/10.1016/0885-064x(88)90012-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bost, Jean-Benoît. "Algebraic leaves of algebraic foliations over number fields". Publications mathématiques de l'IHÉS 93, n.º 1 (septiembre de 2001): 161–221. http://dx.doi.org/10.1007/s10240-001-8191-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Chudnovsky, D. V. y G. V. Chudnovsky. "Algebraic complexities and algebraic curves over finite fields". Proceedings of the National Academy of Sciences 84, n.º 7 (1 de abril de 1987): 1739–43. http://dx.doi.org/10.1073/pnas.84.7.1739.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Beyarslan, Özlem y Ehud Hrushovski. "On algebraic closure in pseudofinite fields". Journal of Symbolic Logic 77, n.º 4 (diciembre de 2012): 1057–66. http://dx.doi.org/10.2178/jsl.7704010.

Texto completo
Resumen
AbstractWe study the automorphism group of the algebraic closure of a substructureAof a pseudo-finite fieldF. We show that the behavior of this group, even whenAis large, depends essentially on the roots of unity inF. For almost all completions of the theory of pseudofinite fields, we show that overA, algebraic closure agrees with definable closure, as soon asAcontains the relative algebraic closure of the prime field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Junker, Markus y Jochen Koenigsmann. "Schlanke Körper (Slim fields)". Journal of Symbolic Logic 75, n.º 2 (junio de 2010): 481–500. http://dx.doi.org/10.2178/jsl/1268917491.

Texto completo
Resumen
AbstractWe examine fields in which model theoretic algebraic closure coincides with relative field theoretic algebraic closure. These are perfect fields with nice model theoretic behaviour. For example they are exactly the fields in which algebraic independence is an abstract independence relation in the sense of Kim and Pillay. Classes of examples are perfect PAC fields, model complete large fields and henselian valued fields of characteristic 0.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

KEKEÇ, GÜLCAN. "-NUMBERS IN FIELDS OF FORMAL POWER SERIES OVER FINITE FIELDS". Bulletin of the Australian Mathematical Society 101, n.º 2 (29 de julio de 2019): 218–25. http://dx.doi.org/10.1017/s0004972719000832.

Texto completo
Resumen
In the field $\mathbb{K}$ of formal power series over a finite field $K$, we consider some lacunary power series with algebraic coefficients in a finite extension of $K(x)$. We show that the values of these series at nonzero algebraic arguments in $\mathbb{K}$ are $U$-numbers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Restuccia, Gaetana. "Algebraic models in different fields". Applied Mathematical Sciences 8 (2014): 8345–51. http://dx.doi.org/10.12988/ams.2014.411922.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

van Hoeij, Mark y Vivek Pal. "Isomorphisms of algebraic number fields". Journal de Théorie des Nombres de Bordeaux 24, n.º 2 (2012): 293–305. http://dx.doi.org/10.5802/jtnb.797.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kollár, János. "Algebraic varieties over PAC fields". Israel Journal of Mathematics 161, n.º 1 (octubre de 2007): 89–101. http://dx.doi.org/10.1007/s11856-007-0073-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Popescu, Dorin. "Algebraic extensions of valued fields". Journal of Algebra 108, n.º 2 (julio de 1987): 513–33. http://dx.doi.org/10.1016/0021-8693(87)90114-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Andrade, Antonio A., Agnaldo J. Ferrari, José C. Interlando y Robson R. Araujo. "Constructions of Dense Lattices over Number Fields". TEMA (São Carlos) 21, n.º 1 (27 de marzo de 2020): 57. http://dx.doi.org/10.5540/tema.2020.021.01.57.

Texto completo
Resumen
In this work, we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2,3,4,5,6,8 and 12, which are rotated versions of the lattices Lambda_n, for n =2,3,4,5,6,8 and K_12. These algebraic lattices are constructed through canonical homomorphism via Z-modules of the ring of algebraic integers of a number field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Grekhov, M. V. "Integral Models of Algebraic Tori Over Fields of Algebraic Numbers". Journal of Mathematical Sciences 219, n.º 3 (24 de octubre de 2016): 413–26. http://dx.doi.org/10.1007/s10958-016-3117-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Scanlon, Thomas y José Felipe Voloch. "Difference algebraic subgroups of commutative algebraic groups over finite fields". manuscripta mathematica 99, n.º 3 (1 de julio de 1999): 329–39. http://dx.doi.org/10.1007/s002290050176.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

He, Yang-Hui. "Fields over Fields". inSTEMM Journal 1, S1 (15 de julio de 2022): 15–46. http://dx.doi.org/10.56725/instemm.v1is1.9.

Texto completo
Resumen
We investigate certain arithmetic properties of field theories. In particular, we study the vacuum structure of supersymmetric gauge theories as algebraic varieties over number fields of finite characteristic. Parallel to the Plethystic Programme of counting the spectrum of operators from the syzygies of the complex geometry, we construct, based on the zeros of the vacuum moduli space over finite fields, the local and global Hasse-Weil zeta functions, as well as develop the associated Dirichlet expansions. We find curious dualities wherein the geometrical properties and asymptotic behaviour of one gauge theory is governed by the number theoretic nature of another.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Scheicher, Klaus. "β-Expansions in algebraic function fields over finite fields". Finite Fields and Their Applications 13, n.º 2 (abril de 2007): 394–410. http://dx.doi.org/10.1016/j.ffa.2005.08.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Khanduja, Sudesh K. "The discriminant of compositum of algebraic number fields". International Journal of Number Theory 15, n.º 02 (marzo de 2019): 353–60. http://dx.doi.org/10.1142/s1793042119500167.

Texto completo
Resumen
For an algebraic number field [Formula: see text], let [Formula: see text] denote the discriminant of an algebraic number field [Formula: see text]. It is well known that if [Formula: see text] are algebraic number fields with coprime discriminants, then [Formula: see text] are linearly disjoint over the field [Formula: see text] of rational numbers and [Formula: see text], [Formula: see text] being the degree of [Formula: see text] over [Formula: see text]. In this paper, we prove that the converse of this result holds in relative extensions of algebraic number fields. We also give some more necessary and sufficient conditions for the analogue of the above equality to hold for algebraic number fields [Formula: see text] linearly disjoint over [Formula: see text].
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Binyamini, Gal. "Bezout-type theorems for differential fields". Compositio Mathematica 153, n.º 4 (13 de marzo de 2017): 867–88. http://dx.doi.org/10.1112/s0010437x17007035.

Texto completo
Resumen
We prove analogs of the Bezout and the Bernstein–Kushnirenko–Khovanskii theorems for systems of algebraic differential conditions over differentially closed fields. Namely, given a system of algebraic conditions on the first $l$ derivatives of an $n$-tuple of functions, which admits finitely many solutions, we show that the number of solutions is bounded by an appropriate constant (depending singly-exponentially on $n$ and $l$) times the volume of the Newton polytope of the set of conditions. This improves a doubly-exponential estimate due to Hrushovski and Pillay. We illustrate the application of our estimates in two diophantine contexts: to counting transcendental lattice points on algebraic subvarieties of semi-abelian varieties, following Hrushovski and Pillay; and to counting the number of intersections between isogeny classes of elliptic curves and algebraic varieties, following Freitag and Scanlon. In both cases we obtain bounds which are singly-exponential (improving the known doubly-exponential bounds) and which exhibit the natural asymptotic growth with respect to the degrees of the equations involved.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Olson, Loren D. "Parametrized units in algebraic number fields". Mathematical Proceedings of the Cambridge Philosophical Society 103, n.º 1 (enero de 1988): 15–25. http://dx.doi.org/10.1017/s0305004100064574.

Texto completo
Resumen
One of the fundamental problems in algebraic number theory is the construction of units in algebraic number fields. Various authors have considered number fields which are parametrized by an integer variable. They have described units in these fields by polynomial expressions in the variable e.g. the fields ℚ(√[N2 + 1]), Nεℤ, with the units εN = N + √[N2 + l]. We begin this article by formulating a general principle for obtaining units in algebraic function fields and candidates for units in parametrized families of algebraic number fields. We show that many of the cases considered previously in the literature by such authors as Bernstein [2], Neubrand [8], and Stender [ll] fall in under this principle. Often the results may be obtained much more easily than before. We then examine the connection between parametrized cubic fields and elliptic curves. In §4 we consider parametrized quadratic fields, a situation previously studied by Neubrand [8]. We conclude in §5 by examining the effect of parametrizing the torsion structure on an elliptic curve at the same time.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Kaliman, Shulim, Frank Kutzschebauch y Matthias Leuenberger. "Complete algebraic vector fields on affine surfaces". International Journal of Mathematics 31, n.º 03 (14 de enero de 2020): 2050018. http://dx.doi.org/10.1142/s0129167x20500184.

Texto completo
Resumen
Let [Formula: see text] be the subgroup of the group [Formula: see text] of holomorphic automorphisms of a normal affine algebraic surface [Formula: see text] generated by elements of flows associated with complete algebraic vector fields. Our main result is a classification of all normal affine algebraic surfaces [Formula: see text] quasi-homogeneous under [Formula: see text] in terms of the dual graphs of the boundaries [Formula: see text] of their SNC-completions [Formula: see text].
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Miller, Russell. "d-computable categoricity for algebraic fields". Journal of Symbolic Logic 74, n.º 4 (diciembre de 2009): 1325–51. http://dx.doi.org/10.2178/jsl/1254748694.

Texto completo
Resumen
AbstractWe use the Low Basis Theorem of Jockusch and Soare to show that all computable algebraic fields are d-computably categorical for a particular Turing degree d with d′ = 0″, but that not all such fields are 0′-computably categorical. We also prove related results about algebraic fields with splitting algorithms, and fields of finite transcendence degree over ℚ.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Narkiewicz, W. "Polynomial cycles in algebraic number fields". Colloquium Mathematicum 58, n.º 1 (1989): 151–55. http://dx.doi.org/10.4064/cm-58-1-151-155.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Luo, Zhaohua. "Kodaira Dimension of Algebraic Function Fields". American Journal of Mathematics 109, n.º 4 (agosto de 1987): 669. http://dx.doi.org/10.2307/2374609.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Lettl, Günter. "Thue equations over algebraic function fields". Acta Arithmetica 117, n.º 2 (2005): 107–23. http://dx.doi.org/10.4064/aa117-2-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Kojima, Hisashi. "Galois extensions of algebraic function fields". Tohoku Mathematical Journal 42, n.º 2 (1990): 149–61. http://dx.doi.org/10.2748/tmj/1178227651.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Chen, Lu y Tobias Fritz. "An algebraic approach to physical fields". Studies in History and Philosophy of Science Part A 89 (octubre de 2021): 188–201. http://dx.doi.org/10.1016/j.shpsa.2021.08.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Gładki, Paweł y Mateusz Pulikowski. "Gauss Congruences in Algebraic Number Fields". Annales Mathematicae Silesianae 36, n.º 1 (17 de enero de 2022): 53–56. http://dx.doi.org/10.2478/amsil-2022-0002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Waterman, P. L. y C. Maclachlan. "Fuchsian groups and algebraic number fields". Transactions of the American Mathematical Society 287, n.º 1 (1 de enero de 1985): 353. http://dx.doi.org/10.1090/s0002-9947-1985-0766224-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Hirschfeldt, Denis R., Ken Kramer, Russell Miller y Alexandra Shlapentokh. "Categoricity properties for computable algebraic fields". Transactions of the American Mathematical Society 367, n.º 6 (20 de octubre de 2014): 3981–4017. http://dx.doi.org/10.1090/s0002-9947-2014-06094-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Sancho de Salas, Juan B. "Tangent algebraic subvarieties of vector fields". Transactions of the American Mathematical Society 357, n.º 9 (7 de octubre de 2004): 3509–23. http://dx.doi.org/10.1090/s0002-9947-04-03584-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Semaev, Igor. "Sparse Algebraic Equations over Finite Fields". SIAM Journal on Computing 39, n.º 2 (enero de 2009): 388–409. http://dx.doi.org/10.1137/070700371.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Forbes, G. W., D. J. Butler, R. L. Gordon y A. A. Asatryan. "Algebraic corrections for paraxial wave fields". Journal of the Optical Society of America A 14, n.º 12 (1 de diciembre de 1997): 3300. http://dx.doi.org/10.1364/josaa.14.003300.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Dixon, John D. "Computing subfields in algebraic number fields". Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 49, n.º 3 (diciembre de 1990): 434–48. http://dx.doi.org/10.1017/s1446788700032432.

Texto completo
Resumen
AbstractLet K:= Q(α) be an algebraic number field which is given by specifying the minimal polynomial f(X) for α over Q. We describe a procedure for finding the subfields L of K by constructing pairs (w(X), g(X)) of polynomials over Q such that L= Q(w(α)) and g(X) is the minimal polynomial for w(α). The construction uses local information obtained from the Frobenius-Chebotarev theorem about the Galois group Gal(f), and computations over p-adic extensions of Q.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Emiris, Ioannis Z., Angelos Mantzaflaris y Bernard Mourrain. "Voronoi diagrams of algebraic distance fields". Computer-Aided Design 45, n.º 2 (febrero de 2013): 511–16. http://dx.doi.org/10.1016/j.cad.2012.10.043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Lu, M., D. Wan, L. P. Wang y X. D. Zhang. "Algebraic Cayley graphs over finite fields". Finite Fields and Their Applications 28 (julio de 2014): 43–56. http://dx.doi.org/10.1016/j.ffa.2014.01.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Abouzahra, M. y L. Lewin. "The polylogarithm in algebraic number fields". Journal of Number Theory 21, n.º 2 (octubre de 1985): 214–44. http://dx.doi.org/10.1016/0022-314x(85)90052-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Haran, Dan. "Hilbertian fields under separable algebraic extensions". Inventiones Mathematicae 137, n.º 1 (1 de junio de 1999): 113–26. http://dx.doi.org/10.1007/s002220050325.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

INGRAM, PATRICK, VALÉRY MAHÉ, JOSEPH H. SILVERMAN, KATHERINE E. STANGE y MARCO STRENG. "ALGEBRAIC DIVISIBILITY SEQUENCES OVER FUNCTION FIELDS". Journal of the Australian Mathematical Society 92, n.º 1 (febrero de 2012): 99–126. http://dx.doi.org/10.1017/s1446788712000092.

Texto completo
Resumen
AbstractIn this note we study the existence of primes and of primitive divisors in function field analogues of classical divisibility sequences. Under various hypotheses, we prove that Lucas sequences and elliptic divisibility sequences over function fields defined over number fields contain infinitely many irreducible elements. We also prove that an elliptic divisibility sequence over a function field has only finitely many terms lacking a primitive divisor.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Fein, Burton y Murray Schacher. "Brauer groups of algebraic function fields". Journal of Algebra 103, n.º 2 (octubre de 1986): 454–65. http://dx.doi.org/10.1016/0021-8693(86)90146-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Coutinho, S. C. y L. Menasché Schechter. "Algebraic solutions of plane vector fields". Journal of Pure and Applied Algebra 213, n.º 1 (enero de 2009): 144–53. http://dx.doi.org/10.1016/j.jpaa.2008.06.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Endo, Shizuo y Ming-Chang Kang. "Function fields of algebraic tori revisited". Asian Journal of Mathematics 21, n.º 2 (2017): 197–224. http://dx.doi.org/10.4310/ajm.2017.v21.n2.a1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Palmer, David, David Bommes y Justin Solomon. "Algebraic Representations for Volumetric Frame Fields". ACM Transactions on Graphics 39, n.º 2 (14 de abril de 2020): 1–17. http://dx.doi.org/10.1145/3366786.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Landau, Susan. "Factoring Polynomials over Algebraic Number Fields". SIAM Journal on Computing 14, n.º 1 (febrero de 1985): 184–95. http://dx.doi.org/10.1137/0214015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Philip, G. M., C. Gregory Skilbeck y D. F. Watson. "Algebraic dispersion fields on ternary diagrams". Mathematical Geology 19, n.º 3 (abril de 1987): 171–81. http://dx.doi.org/10.1007/bf00897745.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Shapiro, Harold N. y Alexandra Shlapentokh. "Diophantine relationships between algebraic number fields". Communications on Pure and Applied Mathematics 42, n.º 8 (diciembre de 1989): 1113–22. http://dx.doi.org/10.1002/cpa.3160420805.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Fein, B. y M. Schacher. "Crossed Products over Algebraic Function Fields". Journal of Algebra 171, n.º 2 (enero de 1995): 531–40. http://dx.doi.org/10.1006/jabr.1995.1026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Rausch, U. "Character Sums in Algebraic Number Fields". Journal of Number Theory 46, n.º 2 (febrero de 1994): 179–95. http://dx.doi.org/10.1006/jnth.1994.1011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Alcázar, Juan Gerardo, Miroslav Lávička y Jan Vršek. "Symmetries of planar algebraic vector fields". Computer Aided Geometric Design 111 (junio de 2024): 102290. http://dx.doi.org/10.1016/j.cagd.2024.102290.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía