Literatura académica sobre el tema "Algal Protein"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Algal Protein".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Algal Protein"
Hirakawa, Yoshihisa, Fabien Burki y Patrick J. Keeling. "Genome-Based Reconstruction of the Protein Import Machinery in the Secondary Plastid of a Chlorarachniophyte Alga". Eukaryotic Cell 11, n.º 3 (20 de enero de 2012): 324–33. http://dx.doi.org/10.1128/ec.05264-11.
Texto completoBlaby-Haas, Crysten E. y Sabeeha S. Merchant. "Comparative and Functional Algal Genomics". Annual Review of Plant Biology 70, n.º 1 (29 de abril de 2019): 605–38. http://dx.doi.org/10.1146/annurev-arplant-050718-095841.
Texto completoSproles, Ashley E., Anthony Berndt, Francis J. Fields y Stephen P. Mayfield. "Improved high-throughput screening technique to rapidly isolate Chlamydomonas transformants expressing recombinant proteins". Applied Microbiology and Biotechnology 106, n.º 4 (febrero de 2022): 1677–89. http://dx.doi.org/10.1007/s00253-022-11790-9.
Texto completoK., Santhoshkumar, Prasanthkumar S. y J. G. Ray. "Chlorococcum humicola (Nageli) Rabenhorst as a Renewable Source of Bioproducts and Biofuel". Journal of Plant Studies 5, n.º 1 (29 de febrero de 2016): 48. http://dx.doi.org/10.5539/jps.v5n1p48.
Texto completoZivanovic, Ana y Danielle Skropeta. "c-AMP Dependent Protein Kinase a Inhibitory Activity of Six Algal Extracts from South Eastern Australia and Their Fatty Acid Composition". Natural Product Communications 7, n.º 7 (julio de 2012): 1934578X1200700. http://dx.doi.org/10.1177/1934578x1200700731.
Texto completoTipsukhon Pimpimol, Burassakorn Tongmee, Padivarada Lomlai, Prsert Prasongpol, Niwooti Whangchai, Yuwalee Unpaprom y Rameshprabu Ramaraj. "Spirogyra cultured in fishpond wastewater for biomass generation". Maejo International Journal of Energy and Environmental Communication 2, n.º 3 (31 de diciembre de 2020): 58–65. http://dx.doi.org/10.54279/mijeec.v2i3.245041.
Texto completoCavalier-Smith, T. "Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae)". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, n.º 1429 (29 de enero de 2003): 109–34. http://dx.doi.org/10.1098/rstb.2002.1194.
Texto completoVasileva, Iv y J. Ivanova. "BIOCHEMICAL PROFILE OF GREEN AND RED ALGAE – A KEY FOR UNDERSTANDING THEIR POTENTIAL APPLICATION AS FOOD ADDITIVES". Trakia Journal of Sciences 17, n.º 1 (2019): 1–7. http://dx.doi.org/10.15547/tjs.2019.01.001.
Texto completoBocanegra, Aránzazu, Adrián Macho-González, Alba Garcimartín, Juana Benedí y Francisco José Sánchez-Muniz. "Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods: Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus". International Journal of Molecular Sciences 22, n.º 8 (7 de abril de 2021): 3816. http://dx.doi.org/10.3390/ijms22083816.
Texto completoMakwana, Hiren V., Priyanka G. Pandey y Binita A. Desai. "Phytochemical Analysis and Evaluation of Total Phenolic Content of Algal Biomass Found in Tapi River in Surat". International Journal for Research in Applied Science and Engineering Technology 10, n.º 4 (30 de abril de 2022): 2783–87. http://dx.doi.org/10.22214/ijraset.2022.41897.
Texto completoTesis sobre el tema "Algal Protein"
Turkina, Maria. "Functional proteomics of protein phosphorylation in algal photosynthetic membranes". Doctoral thesis, Linköping : Univ, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10708.
Texto completoBosley, Amber L. "Algae Characterization and Processing Techniques". University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321538296.
Texto completoCasey, Diane M. "DC3, a Calcium-Binding Protein Important for Assembly of the Chlamydomonas Outer Dynein Arm: a Dissertation". eScholarship@UMMS, 2005. http://escholarship.umassmed.edu/gsbs_diss/156.
Texto completoCasey, Diane M. "DC3, a Calcium-Binding Protein Important for Assembly of the Chlamydomonas Outer Dynein Arm: a Dissertation". eScholarship@UMMS, 2003. https://escholarship.umassmed.edu/gsbs_diss/156.
Texto completoRonzitti, Giuseppe <1979>. "Le tossine algali alterano proteine dell'adesione cellulare". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/644/1/Tesi_Ronzitti_Giuseppe.pdf.
Texto completoRonzitti, Giuseppe <1979>. "Le tossine algali alterano proteine dell'adesione cellulare". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/644/.
Texto completoBorgen, Kelly. "Evaluation of physicochemical properties of modified algae protein adhesives". Thesis, Kansas State University, 2012. http://hdl.handle.net/2097/13634.
Texto completoDepartment of Biological and Agricultural Engineering
Donghai Wang
Algae proteins have similar amino acid compositions as conventional plant proteins, and are comparatively richer in the essential amino acids. Algae protein has the potential to be used in the development of a wide variety of products, including foods, animal feeds, bioplastics, and adhesives. The utilization of algae protein for value-added products would increase the economic feasibility of algae biodiesel. This research evaluated the adhesion, rheological, morphological, and thermal properties of adhesives made from algae protein extracted from Cladophora sp. and modified with either sodium hydroxide (pH 9, 10, 11) or sodium dodecyl sulfate (SDS, 0.5, 1, and 3%). Both alkali-modified and SDS-modified algae protein adhesives displayed improved dry shear strength compared to unmodified algae protein. However, only 3% SDS-modified algae protein significantly improved the water resistance as shown in wet and soak shear strength tests. Thermal analysis using differential scanning calorimetry showed that SDS modification caused complete denaturation of the algae protein. SDS modification also increased the viscosity of the adhesive and created rougher particle surface texture. These data suggest that SDS modification can effectively increase shear strength and water resistance of algae protein adhesives caused by protein denaturation and protein structure change.
Azevedo, Brian. "Algae as an economical protein source for dairy cattle nutrition". Click here to view, 2009. http://digitalcommons.calpoly.edu/dscisp/23/.
Texto completoProject advisor: Edwin H. Jaster. Title from PDF title page; viewed on Jan. 28, 2010. Includes bibliographical references. Also available on microfiche.
Djabayan-Djibeyan, Pablo. "A comparison of lectins in green Venezuelan marine algae". Thesis, University of Portsmouth, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343338.
Texto completoLupatini, Anne Luize. "Extração de proteínas e carboidratos da biomassa de Spirulina platensis e caracterização da fração proteica". Universidade Tecnológica Federal do Paraná, 2016. http://repositorio.utfpr.edu.br/jspui/handle/1/2180.
Texto completoA Spirulina platensis é reconhecida como uma fonte não convencional de proteínas, em função da sua constituição favorável deste nutriente (46 a 63%), possuindo concentração superior a das carnes e da soja. Além disso, apresenta potencial como matéria-prima para a produção de bioetanol, podendo acumular entre 8,0 e 14,0% de carboidratos. A fim de abranger o conceito de Biorrefinarias Integradas, o objetivo deste trabalho consistiu em avaliar a extração conjunta de proteínas e carboidratos da biomassa de Spirulina platensis utilizando tratamento ultrassônico e agitação em meio alcalino, e a posterior produção e caracterização do concentrado proteico. Na primeira etapa do trabalho, aplicou-se uma estratégia sequencial de planejamento experimental (Planejamento Fatorial Fracionário (PFF) seguido de Delineamentos Compostos Centrais Rotacionais (DCCR)) para seleção e maximização das variáveis com influência significativa sobre o processo de extração. Com as condições de extração otimizadas, foi possível atingir recuperação final de 75,85% e de 41,54% de proteínas e carboidratos, respectivamente. Na segunda etapa do trabalho foi realizada a precipitação de proteínas, para a separação da fase líquida contendo os carboidratos e obtenção do concentrado proteico, o qual foi caracterizado quimicamente e de acordo com sua funcionalidade tecnológica. O concentrado proteico apresentou coloração verde azulada com 75,97% de proteínas (b.s.), concentrações apreciáveis de aminoácidos, sendo o que o triptofano apresentou o maior escore químico (1,71) e o aminoácido limitante foi a histidina; na análise da estrutura secundária das proteínas, as conformações mais abundantes foram β-folha e α-hélice. Na etapa de avaliação da funcionalidade tecnológica observou-se que o pH apresentou influência nas propriedades de capacidade de absorção de água, capacidade de formação e estabilidade de espuma e emulsão, e capacidade de formação de gel, o que pode ser justificado pela solubilidade desta proteína, que é mínima em pH 3,0 e máxima em 9,0. A concentração de concentrado proteico também interferiu no desempenho destas propriedades; melhores resultados foram obtidos em maiores níveis de concentração, exceto para a capacidade de absorção de água e de óleo. Desta forma foi possível determinar que as proteínas de Spirulina platensis podem contribuir na formulação de alimentos, possuindo características eficazes de formação de emulsões, espumas ou géis, bem como pode ser utilizada como fonte suplementar de proteínas.
Spirulina platensis is considered an unconventional source of protein, because its avorably constitution on this component (46 to 63%), which is higher than the meat and soy. Furthermore, it has potential as a feedstock for bioethanol production and can accumulate between 8.0 to 14.0% of carbohydrate. In order to cover the concept of Integrated Biorefineries, the aim of this study was to evaluate the combined extraction of proteins and carbohydrates from Spirulina platensis biomass using sonication and agitation, under alkaline conditions, and the subsequent production and characterization of protein concentrate. The first stage of this work consisted of applying a sequential strategy of experimental design (Fractional Factorial Design FFD) and Central Composite Rotatable Design (CCRD)) by selecting and maximizing variables with significant influence on the protein and carbohydrates extraction. With the extraction conditions established, a final yield of 75.85% and 41.54% from protein and carbohydrate, respectively, was reached. In the second step, the protein concentrate obtained by precipitation was submitted to chemical and echnological functionality analyzes. The protein concentrate showed blue-green color with 75.97% of proteins (dry weight), appreciable concentrations of amino acids, where tryptophan had the highest chemical score (1.71) and the limiting amino acid was histidine; the secondary structure of proteins showed that the most abundant conformations present were β-sheet and α-helice. At the step of echnological functionality evaluation it was observed that the pH influenced on the properties of water absorption capacity, foaming and emulsion capacity and stability, and gelation capacity; it can be justified by the solubility of this protein which is minimal at pH 3.0 and maximum at 9.0. The level of addition of protein concentrate also interfered on the performance of these properties; better results have been obtained at higher concentrations levels, except for water and oil absorption capacity. Thus, it was confirmed that the Spirulina platensis proteins may contribute in different ormulations of foods, having effective characteristics to form emulsions, foams or gels, and can be used as a supplemental source of protein.
Libros sobre el tema "Algal Protein"
Lohrenz, Steven E. Primary production of particulate protien amino acids: Algal protein metabolism and its relationship to the composition of particulate organic matter. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1985.
Buscar texto completoKarel, Marcus. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods. Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1985.
Buscar texto completoKarel, Marcus. Utilization of non-conventional systems for conversion of biomass to food components: Final report. Cambridge, MA: Dept. of Chemical Engineering, Massachusetts Institute of Technology, 1989.
Buscar texto completoUnited States. National Aeronautics and Space Administration, ed. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods. Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1985.
Buscar texto completoKarel, Marcus. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods. Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1985.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods. Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1985.
Buscar texto completoKarel, Marcus. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterization of algal proteins and lipids ; status report (March 1985 to June 1986). Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1986.
Buscar texto completoZ, Nakhost y United States. National Aeronautics and Space Administration, eds. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterization of algal proteins and lipids ; status report (March 1985 to June 1986). Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1986.
Buscar texto completoUnited States. National Aeronautics and Space Administration, ed. Utilization of non-conventional systems for conversion of biomass to food components: Final report. Cambridge, MA: Dept. of Chemical Engineering, Massachusetts Institute of Technology, 1989.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Utilization of non-conventional systems for conversion of biomass to food components: Final report. Cambridge, MA: Dept. of Chemical Engineering, Massachusetts Institute of Technology, 1989.
Buscar texto completoCapítulos de libros sobre el tema "Algal Protein"
Richard, Hamilton, Nizovtseva Irina, Chernuskin Dmitri y Marina G. Kalyuzhnaya. "C1-Proteins Prospect for Production of Industrial Proteins and Protein-Based Materials from Methane". En Algal Biorefineries and the Circular Bioeconomy, 251–76. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195429-7.
Texto completoRojo, Elena M., Alejandro Filipigh, David Moldes, Marisol Vega y Silvia Bolado. "Potential of Microalgae for Protein Production". En Algal Biorefineries and the Circular Bioeconomy, 91–132. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195405-4.
Texto completoKnoshaug, Eric P., Alida T. Gerritsen, Calvin A. Henard y Michael T. Guarnieri. "Methods for Algal Protein Isolation and Proteome Analysis". En Methods in Molecular Biology, 51–59. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0195-2_5.
Texto completoNigam, Mohit, Ruchi Yadav y Garima Awasthi. "In-Silico Construction of Hybrid ORF Protein to Enhance Algal Oil Content for Biofuel". En Advances in Biomedical Engineering and Technology, 67–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6329-4_8.
Texto completoYucetepe, Aysun. "Strategies for Nanoencapsulation of Algal Proteins, Protein Hydrolysates and Bioactive Peptides: The Effect of Encapsulation Techniques on Bioactive Properties". En Nanotechnology in the Life Sciences, 211–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81557-8_9.
Texto completoChirdon, William M. "Utilization of Biorefinery Waste Proteins as Feed, Glues, Composites, and Other Co-Products". En Algal Biorefineries, 367–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20200-6_11.
Texto completoIrvani, Neda, Alan Carne, Dominic Agyei y Indrawati Oey. "Algae as an Alternative Source of Protein". En Alternative Proteins, 65–84. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429299834-4.
Texto completoOlatunji, Ololade. "Aquatic Plants and Algae Proteins". En Springer Series on Polymer and Composite Materials, 211–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34709-3_10.
Texto completoJeon, You-Jin y Kalpa Samarakoon. "Recovery of Proteins and their Biofunctionalities from Marine Algae". En Marine Proteins and Peptides, 253–69. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118375082.ch12.
Texto completoGrimme, L. H., I. Damm, D. Steinmetz y B. Scheffczyk. "Pigment-Protein Complexes of Algal Thylakoid Membranes: Variations in Pattern, Pigment Composition and Reaction Centre II Types During The Cell Cycle of Chlorella Fusca and after Adaptation to Low Light Intensities". En Progress in Photosynthesis Research, 347–50. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3535-8_84.
Texto completoActas de conferencias sobre el tema "Algal Protein"
Quiroz-Arita, Carlos. "High-protein algal bioproducts: An economic and environmental sustainability review and risk analysis." En Proposed for presentation at the International Conference on Algal Biomass, Biofuels & Bioproducts held June 14-16, 2021, Virtual, United States. US DOE, 2021. http://dx.doi.org/10.2172/1873059.
Texto completoFreeman, Eric, Lisa Mauck Weiland y Ryan Soncini. "Water Purification Through Selective Transport". En ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5062.
Texto completoCalinescu, Ioan, Alin Vintila, Aurel Diacon, Mircea Vinatoru, Ana Maria Galan y Sanda Velea. "GROWTH OF NANNOCHLORIS ALGAE IN THE PRESENCE OF MICROWAVES (CONTINUOUS REACTOR)". En Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9820.
Texto completoBounnit, Touria, Imen Saadaoui, Rihab Rasheed, Hareb Al jabri, Sami Sayadi y Ahmad Ayesh. "Assessment of SnO2 Nanoparticles’ Impact on local Pichoclorum Atomus Growth Performance, Cell Morphology and Metabolites Content". En Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0034.
Texto completoB.C., Meskhi, Mozgovoy A.V., Rudoy D.V., Olshevskaya A.V., Smirnova O.A., Sarkisian D.S. y Maltseva T.A. "ALTERNATIVE SOURCES OF PROTEIN AS A RAW MATERIAL FOR THE PRODUCTION OF NEW FOOD PRODUCTS: PROBLEMS AND PROSPECTS". En OF THE ANNIVERSARY Х INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE «INNOVATIVE TECHNOLOGIES IN SCIENCE AND EDUCATION» («ITSE 2022» CONFERENCE). DSTU-Print, 2022. http://dx.doi.org/10.23947/itse.2022.160-166.
Texto completoHobbs, Raymond y Xiaolei Sun. "Integrated Wind, Sun, Fossil, Biomass and Nuclear for Energy Sustainability". En ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90129.
Texto completoBeaulieu, Lucie. "Algae: A Key Protein Source for the Development of New Functional Ingredients". En Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.150.
Texto completoNatsir, Hasnah, Marinda, Ahyar Ahmad, Abdul Wahid Wahab, Nunuk Hariani Soekamto, Siti Fauziah, Yusriadi, Rafsanjany Ramadan, Harningsih Karim y Fatahu. "Hydrolisis enzymatic protein from microsimbiont red algae Eucheuma cottonii as an antibacterial". En INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (ICEE 2021). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059610.
Texto completoSethi, Purnima, Mohit Prasad y Sukhdev Roy. "All-optical switching in LOV2-C250S protein mutant from Chlamydomonas reinhardtii green algae". En 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems (ELECTRO-2009). IEEE, 2009. http://dx.doi.org/10.1109/electro.2009.5441039.
Texto completoKhairunnur, Siti, Ahyar Ahmad, Rugaiyah A. Arfah, Firdaus Zenta, Nursiah La Nafie, Hasnah Natsir y Andi Akbar. "Isolation and identification of anticancer-protein-producing symbiotic bacteria from green algae Caulerpa lentillifera". En THE 9TH INTERNATIONAL CONFERENCE OF THE INDONESIAN CHEMICAL SOCIETY ICICS 2021: Toward a Meaningful Society. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0104089.
Texto completoInformes sobre el tema "Algal Protein"
Mitchell, Brian G., Amir Neori, Charles Yarish, D. Allen Davis, Tzachi Samocha y Lior Guttman. The use of aquaculture effluents in spray culture for the production of high protein macroalgae for shrimp aqua-feeds. United States Department of Agriculture, enero de 2013. http://dx.doi.org/10.32747/2013.7597934.bard.
Texto completoChristopher, David A. y Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, mayo de 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Texto completoNango, Mamoru. Assembly of Photosynthetic Antenna Protein Complexes from Algae for Development of Nano-biodevice and Its Fuelization. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2013. http://dx.doi.org/10.21236/ada586787.
Texto completoVakharia, Vikram, Shoshana Arad, Yonathan Zohar, Yacob Weinstein, Shamila Yusuff y Arun Ammayappan. Development of Fish Edible Vaccines on the Yeast and Redmicroalgae Platforms. United States Department of Agriculture, febrero de 2013. http://dx.doi.org/10.32747/2013.7699839.bard.
Texto completoOhad, Itzhak y Himadri Pakrasi. Role of Cytochrome B559 in Photoinhibition. United States Department of Agriculture, diciembre de 1995. http://dx.doi.org/10.32747/1995.7613031.bard.
Texto completoStern, David B. y Gadi Schuster. Manipulation of Gene Expression in the Chloroplast: Control of mRNA Stability and Transcription Termination. United States Department of Agriculture, diciembre de 1993. http://dx.doi.org/10.32747/1993.7568750.bard.
Texto completoSchuster, Gadi y David Stern. Integrated Studies of Chloroplast Ribonucleases. United States Department of Agriculture, septiembre de 2011. http://dx.doi.org/10.32747/2011.7697125.bard.
Texto completoNREL Discovers Novel Protein Interaction in Green Algae that Suggests New Strategies to Improve Hydrogen Photoproduction (Fact Sheet). Office of Scientific and Technical Information (OSTI), febrero de 2011. http://dx.doi.org/10.2172/1009293.
Texto completo