Literatura académica sobre el tema "Alanine glyoxylate aminotransferase (AGT)"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Alanine glyoxylate aminotransferase (AGT)".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Alanine glyoxylate aminotransferase (AGT)"

1

Han, Qian, Seong Ryul Kim, Haizhen Ding, and Jianyong Li. "Evolution of two alanine glyoxylate aminotransferases in mosquito." Biochemical Journal 397, no. 3 (2006): 473–81. http://dx.doi.org/10.1042/bj20060469.

Texto completo
Resumen
In the mosquito, transamination of 3-HK (3-hydroxykynurenine) to XA (xanthurenic acid) is catalysed by an AGT (alanine glyoxylate aminotransferase) and is the major branch pathway of tryptophan metabolism. Interestingly, malaria parasites hijack this pathway to use XA as a chemical signal for development in the mosquito. Here, we report that the mosquito has two AGT isoenzymes. One is the previously cloned AeHKT [Aedes aegypti HKT (3-HK transaminase)] [Han, Fang and Li (2002) J. Biol. Chem. 277, 15781–15787], similar to hAGT (human AGT), which primarily catalyses 3-HK to XA in mosquitoes, and
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wang, Bing-Jun, Jing-Ming Xia, Qian Wang, Jiang-Long Yu, Zhiyin Song, and Huabin Zhao. "Diet and Adaptive Evolution of Alanine-Glyoxylate Aminotransferase Mitochondrial Targeting in Birds." Molecular Biology and Evolution 37, no. 3 (2019): 786–98. http://dx.doi.org/10.1093/molbev/msz266.

Texto completo
Resumen
Abstract Adaptations to different diets represent a hallmark of animal diversity. The diets of birds are highly variable, making them an excellent model system for studying adaptive evolution driven by dietary changes. To test whether molecular adaptations to diet have occurred during the evolution of birds, we examined a dietary enzyme alanine-glyoxylate aminotransferase (AGT), which tends to target mitochondria in carnivorous mammals, peroxisomes in herbivorous mammals, and both mitochondria and peroxisomes in omnivorous mammals. A total of 31 bird species were examined in this study, which
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Cooper, P. J., C. J. Danpure, P. J. Wise, and K. M. Guttridge. "Immunocytochemical localization of human hepatic alanine: glyoxylate aminotransferase in control subjects and patients with primary hyperoxaluria type 1." Journal of Histochemistry & Cytochemistry 36, no. 10 (1988): 1285–94. http://dx.doi.org/10.1177/36.10.3418107.

Texto completo
Resumen
Primary hyperoxaluria type 1 (PH1) is an inherited disorder of glyoxylate metabolism caused by a deficiency of the hepatic peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT; EC 2.6.1.44) [FEBS Lett (1986) 201:20]. The aim of the present study was to investigate the intracellular distribution of immunoreactive AGT protein, using protein A-gold immunocytochemistry, in normal human liver and in livers of PH1 patients with (CRM+) or without (CRM-) immunologically crossreacting enzyme protein. In all CRM+ individuals, which included three controls, a PH1 heterozygote and a PH1 homozygote
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hameed, Mohammed, Kashif Eqbal, Beena Nair, Alexander Woywodt, and Aimun Ahmed. "Late Diagnosis of Primary Hyperoxaluria by Crystals in the Bone Marrow!" Nephrology @ Point of Care 1, no. 1 (2015): napoc.2015.1467. http://dx.doi.org/10.5301/napoc.2015.14679.

Texto completo
Resumen
Primary hyperoxaluria type 1 (PH1) is a rare, inherited, autosomal recessive, metabolic disorder caused by a deficiency of peroxisomal alanine-glyoxylate aminotransferase (AGT). We describe here a case of a 57-year-old man with End Stage Renal Disease, where the late age of presentation of PH T1 due to marked heterogeneity of disease expression caused a delay in diagnosis, and we discuss the causes of the poor outcome typical of this condition
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Danpure, Christopher J., and Patricia R. Jennings. "Further studies on the activity and subcellular distribution of alanine: Glyoxylate aminotransferase in the livers of patients with primary hyperoxaluria type 1." Clinical Science 75, no. 3 (1988): 315–22. http://dx.doi.org/10.1042/cs0750315.

Texto completo
Resumen
1. The activity of alanine:glyoxylate aminotransferase (AGT; EC 2.6.1.44) has been measured in the unfractionated livers of 20 patients with primary hyperoxaluria type 1 (PH1), three patients with other forms of primary hyperoxaluria and one PH1 heterozygote. The subcellular distribution of AGT activity was examined in four of the PH1 livers and in the liver of the PH1 heterozygote. 2. The mean AGT activity in the unfractionated PH1 livers was 12.6% of the mean control value. The activities of other aminotransferases and the peroxisomal marker enzymes were normal. When corrected for cross-over
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Cellini, Barbara, Mariarita Bertoldi, Riccardo Montioli, Alessandro Paiardini, and Carla Borri Voltattorni. "Human wild-type alanine:glyoxylate aminotransferase and its naturally occurring G82E variant: functional properties and physiological implications." Biochemical Journal 408, no. 1 (2007): 39–50. http://dx.doi.org/10.1042/bj20070637.

Texto completo
Resumen
Human hepatic peroxisomal AGT (alanine:glyoxylate aminotransferase) is a PLP (pyridoxal 5′-phosphate)-dependent enzyme whose deficiency causes primary hyperoxaluria Type I, a rare autosomal recessive disorder. To acquire experimental evidence for the physiological function of AGT, the Keq,overall of the reaction, the steady-state kinetic parameters of the forward and reverse reactions, and the pre-steady-state kinetics of the half-reactions of the PLP form of AGT with L-alanine or glycine and the PMP (pyridoxamine 5′-phosphate) form with pyruvate or glyoxylate have been measured. The results i
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Harambat, Jérôme, Sonia Fargue, Justine Bacchetta, Cécile Acquaviva, and Pierre Cochat. "Primary Hyperoxaluria." International Journal of Nephrology 2011 (2011): 1–11. http://dx.doi.org/10.4061/2011/864580.

Texto completo
Resumen
Primary hyperoxalurias (PH) are inborn errors in the metabolism of glyoxylate and oxalate. PH type 1, the most common form, is an autosomal recessive disorder caused by a deficiency of the liver-specific enzyme alanine, glyoxylate aminotransferase (AGT) resulting in overproduction and excessive urinary excretion of oxalate. Recurrent urolithiasis and nephrocalcinosis are the hallmarks of the disease. As glomerular filtration rate decreases due to progressive renal damage, oxalate accumulates leading to systemic oxalosis. Diagnosis is often delayed and is based on clinical and sonographic findi
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Danpure, C. J., P. J. Cooper, P. J. Wise, and P. R. Jennings. "An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria." Journal of Cell Biology 108, no. 4 (1989): 1345–52. http://dx.doi.org/10.1083/jcb.108.4.1345.

Texto completo
Resumen
Most patients with the autosomal recessive disease primary hyperoxaluria type 1 (PH1) have a complete deficiency of alanine/glyoxylate aminotransferase (AGT) enzyme activity and immunoreactive protein. However a few possess significant residual activity and protein. In normal human liver, AGT is entirely peroxisomal, whereas it is entirely mitochondrial in carnivores, and both peroxisomal and mitochondrial in rodents. Using the techniques of isopycnic sucrose and Percoll density gradient centrifugation and quantitative protein A-gold immunoelectron microscopy, we have found that in two PH1 pat
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Purdue, P. E., Y. Takada, and C. J. Danpure. "Identification of mutations associated with peroxisome-to-mitochondrion mistargeting of alanine/glyoxylate aminotransferase in primary hyperoxaluria type 1." Journal of Cell Biology 111, no. 6 (1990): 2341–51. http://dx.doi.org/10.1083/jcb.111.6.2341.

Texto completo
Resumen
We have previously shown that in some patients with primary hyperoxaluria type 1 (PH1), disease is associated with mistargeting of the normally peroxisomal enzyme alanine/glyoxylate aminotransferase (AGT) to mitochondria (Danpure, C.J., P.J. Cooper, P.J. Wise, and P.R. Jennings. J. Cell Biol. 108:1345-1352). We have synthesized, amplified, cloned, and sequenced AGT cDNA from a PH1 patient with mitochondrial AGT (mAGT). This identified three point mutations that cause amino acid substitutions in the predicted AGT protein sequence. Using PCR and allele-specific oligonucleotide hybridization, a r
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

AMOROSO, ANTONIO, DOROTI PIRULLI, FIORELLA FLORIAN, et al. "AGXTGene Mutations and Their Influence on Clinical Heterogeneity of Type 1 Primary Hyperoxaluria." Journal of the American Society of Nephrology 12, no. 10 (2001): 2072–79. http://dx.doi.org/10.1681/asn.v12102072.

Texto completo
Resumen
Abstract. Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder that is caused by a deficiency of alanine: glyoxylate aminotransferase (AGT), which is encoded by a single copy gene (AGXT). Molecular diagnosis was used in conjunction with clinical, biochemical, and enzymological data to evaluate genotype-phenotype correlation. Twenty-three unrelated, Italian PH1 patients were studied, 20 of which were grouped according to severe form of PH1 (group A), adult form (group B), and mild to moderate decrease in renal function (group C). All 23 patients were analyzed by using the singl
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Alanine glyoxylate aminotransferase (AGT)"

1

Holbrook, Joanna Dawn. "Molecular evolution of the intracellular targeting of alanine glyoxylate aminotransferase." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272486.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Birdsey, Graeme Miles. "Molecular analysis of the peroxisomal targeting of guinea-pig alanine : glyoxylate aminotransferase." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300508.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Burdin, Dmitry V., Alexey A. Kolobov, Chad Brocker та ін. "Diabetes-linked transcription factor HNF4α regulates metabolism of endogenous methylarginines and β-aminoisobutyric acid by controlling expression of alanine-glyoxylate aminotransferase 2". Nature Publishing Group, 2016. https://tud.qucosa.de/id/qucosa%3A30404.

Texto completo
Resumen
Elevated levels of circulating asymmetric and symmetric dimethylarginines (ADMA and SDMA) predict and potentially contribute to end organ damage in cardiovascular diseases. Alanine-glyoxylate aminotransferase 2 (AGXT2) regulates systemic levels of ADMA and SDMA, and also of beta-aminoisobutyric acid (BAIB)-a modulator of lipid metabolism. We identified a putative binding site for hepatic nuclear factor 4 α (HNF4α) in AGXT2 promoter sequence. In a luciferase reporter assay we found a 75% decrease in activity of Agxt2 core promoter after disruption of the HNF4α binding site. Direct binding of HN
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Burdin, Dmitry V., Alexey A. Kolobov, Chad Brocker та ін. "Diabetes-linked transcription factor HNF4α regulates metabolism of endogenous methylarginines and β-aminoisobutyric acid by controlling expression of alanine-glyoxylate aminotransferase 2". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-226882.

Texto completo
Resumen
Elevated levels of circulating asymmetric and symmetric dimethylarginines (ADMA and SDMA) predict and potentially contribute to end organ damage in cardiovascular diseases. Alanine-glyoxylate aminotransferase 2 (AGXT2) regulates systemic levels of ADMA and SDMA, and also of beta-aminoisobutyric acid (BAIB)-a modulator of lipid metabolism. We identified a putative binding site for hepatic nuclear factor 4 α (HNF4α) in AGXT2 promoter sequence. In a luciferase reporter assay we found a 75% decrease in activity of Agxt2 core promoter after disruption of the HNF4α binding site. Direct binding of HN
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

DINDO, MIRCO. "Molecular analysis of the dimerization and aggregation processes of human alanine:glyoxylate aminotransferase and effect of mutations leading to Primary Hyperoxaluria Type I." Doctoral thesis, 2017. http://hdl.handle.net/11562/960999.

Texto completo
Resumen
Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive disorder characterized by the deposition of insoluble calcium oxalate crystals at first in the kidneys and urinary tract and then in the whole body. PH1 is caused by the deficiency of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT). AGT is a pyridoxal 5'-phosphate (PLP)-dependent enzyme, which converts glyoxylate to glycine, thus preventing glyoxylate oxidation to oxalate and calcium oxalate formation. Only two curative therapeutic approaches are currently available for PH1: the administration of pyridoxine (PN)
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Alanine glyoxylate aminotransferase (AGT)"

1

Danpure, C. J., and P. R. Jennings. "Deficiency of Peroxisomal Alanine: Glyoxylate Aminotransferase in Primary Hyperoxaluria Type 1." In Proceedings in Life Sciences. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71325-5_40.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Danpure, C. J., and P. R. Jennings. "Enzymatic Heterogeneity in Primary Hyperoxaluria Type 1 (Hepatic Peroxisomal Alanine: Glyoxylate Aminotransferase Deficiency)." In Studies in Inherited Metabolic Disease. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1259-5_32.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wanders, R. J. A., C. W. T. van Roermund, S. Jurriaans, et al. "Diversity in Residual Alanine Glyoxylate Aminotransferase Activity in Hyperoxaluria Type I: Correlation with Pyridoxine Responsiveness." In Studies in Inherited Metabolic Disease. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1259-5_33.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!