Literatura académica sobre el tema "Air traffic data"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Air traffic data".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Air traffic data"
Desimoni, Federico, Sergio Ilarri, Laura Po, Federica Rollo y Raquel Trillo-Lado. "Semantic Traffic Sensor Data: The TRAFAIR Experience". Applied Sciences 10, n.º 17 (25 de agosto de 2020): 5882. http://dx.doi.org/10.3390/app10175882.
Texto completoManvelidze, A. B. "Air lines network modelling algorithm". Strategic decisions and risk management, n.º 6 (13 de febrero de 2018): 22–29. http://dx.doi.org/10.17747/2078-8886-2017-6-22-29.
Texto completoOlive, Xavier. "traffic, a toolbox for processing and analysing air traffic data". Journal of Open Source Software 4, n.º 39 (5 de julio de 2019): 1518. http://dx.doi.org/10.21105/joss.01518.
Texto completoAsirvadam, Tina Vimala, Sonali Rao S y Balachander T. "Predicting Air Traffic Density in an Air Traffic Control Sector". ECS Transactions 107, n.º 1 (24 de abril de 2022): 5037–45. http://dx.doi.org/10.1149/10701.5037ecst.
Texto completoDuley, Jacqueline A., Scott M. Galster y Raja Parasuraman. "Information Manager for Determining Data Presentation Preferences in Future Enroute Air Traffic Management". Proceedings of the Human Factors and Ergonomics Society Annual Meeting 42, n.º 1 (octubre de 1998): 47–51. http://dx.doi.org/10.1177/154193129804200112.
Texto completoDudás, Gábor, Lajos Boros, Viktor Pál y Péter Pernyész. "Mapping cost distance using air traffic data". Journal of Maps 12, n.º 4 (3 de julio de 2015): 695–700. http://dx.doi.org/10.1080/17445647.2015.1061463.
Texto completoAwan, Faraz Malik, Roberto Minerva y Noel Crespi. "Improving Road Traffic Forecasting Using Air Pollution and Atmospheric Data: Experiments Based on LSTM Recurrent Neural Networks". Sensors 20, n.º 13 (4 de julio de 2020): 3749. http://dx.doi.org/10.3390/s20133749.
Texto completoKharchenko, Volodymur, Ivan Ostroumov, Nataliia Kuzmenko y Arkadiy Larionov. "Airplane positioning using airborne collision avoidance system data". E3S Web of Conferences 164 (2020): 03050. http://dx.doi.org/10.1051/e3sconf/202016403050.
Texto completoMajumdar, Arnab, Washington Y. Ochieng, Gérard McAuley, Jean Michel Lenzi y Catalin Lepadatu. "The Factors Affecting Airspace Capacity in Europe: A Cross-Sectional Time-Series Analysis Using Simulated Controller Workload Data". Journal of Navigation 57, n.º 3 (24 de agosto de 2004): 385–405. http://dx.doi.org/10.1017/s0373463304002863.
Texto completoDekoninck, Luc y Marcel Severijnen. "Correlating Traffic Data, Spectral Noise and Air Pollution Measurements: Retrospective Analysis of Simultaneous Measurements near a Highway in The Netherlands". Atmosphere 13, n.º 5 (5 de mayo de 2022): 740. http://dx.doi.org/10.3390/atmos13050740.
Texto completoTesis sobre el tema "Air traffic data"
Condé, Rocha Murça Mayara. "Data-driven modeling of air traffic flows for advanced Air Traffic Management". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120378.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 209-219).
The Air Traffic Management (ATM) system enables air transportation by ensuring a safe and orderly air traffic flow. As the air transport demand has grown, ATM has become increasingly challenging, resulting in high levels of congestion, flight delays and environmental impacts. To sustain the industry growth foreseen and enable more efficient air travel, it is important to develop mechanisms for better understanding and predicting the air traffic flow behavior and performance in order to assist human decision-makers to deliver improved airspace design and traffic management solutions. This thesis presents a data-driven approach to modeling air traffic flows and analyzes its contribution to supporting system level ATM decision-making. A data analytics framework is proposed for high-fidelity characterization of air traffic flows from large-scale flight tracking data. The framework incorporates a multi-layer clustering analysis to extract spatiotemporal patterns in aircraft movement towards the identification of trajectory patterns and traffic flow patterns. The outcomes and potential impacts of this framework are demonstrated with a detailed characterization of terminal area traffic flows in three representative multi-airport (metroplex) systems of the global air transportation system: New York, Hong Kong and Sao Paulo. As a descriptive tool for systematic analysis of the flow behavior, the framework allows for cross-metroplex comparisons of terminal airspace design, utilization and traffic performance. Novel quantitative metrics are created to summarize metroplex efficiency, capacity and predictability. The results reveal several structural, operational and performance differences between the metroplexes analyzed and highlight varied action areas to improve air traffic operations at these systems. Finally, the knowledge derived from flight trajectory data analytics is leveraged to develop predictive and prescriptive models for metroplex configuration and capacity planning decision support. Supervised learning methods are used to create prediction models capable of translating weather forecasts into probabilistic forecasts of the metroplex traffic flow structure and airport capacity for strategic time horizons. To process these capacity forecasts and assist the design of traffic flow management strategies, a new optimization model for capacity allocation is developed. The proposed models are found to outperform currently used methods in predicting throughput performance at the New York airports. Moreover, when used to prescribe optimal Airport Acceptance Rates in Ground Delay Programs, an overall delay reduction of up to 9.7% is achieved.
by Mayara Condé Rocha Murça.
Ph. D.
Rehm, Frank. "Visual data analysis in air traffic management /". Köln : DLR, 2007. http://diglib.uni-magdeburg.de/Dissertationen/2007/frarehm.htm.
Texto completoLin, Joyce C. (Joyce Chaisin) 1979. "VisualFlight : the air traffic control data analysis system". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87266.
Texto completoPopescu, Vlad M. "Airspace analysis and design by data aggregation and lean model synthesis". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49126.
Texto completoMarzuoli, Aude Claire. "En-route air traffic optimization under nominal and perturbed conditions, on a 3D data-based network flow model". Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43639.
Texto completoEnea, Gabriele. "Simulation-Based Study to Quantify Data-Communication Benefits in Congested Airport Terminal Area". Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/31206.
Texto completoMaster of Science
White, Kyle John Sinclair. "Increasing service visibility for future, softwarised air traffic management data networks". Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8536/.
Texto completoSchiper, Nicole. "Traffic data sampling for air pollution estimation at different urban scales". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSET008/document.
Texto completoRoad traffic is a major source of air pollution in urban areas. Policy makers are pushing for different solutions including new traffic management strategies that can directly lower pollutants emissions. To assess the performances of such strategies, the calculation of pollution emission should consider spatial and temporal dynamic of the traffic. The use of traditional on-road sensors (e.g. inductive sensors) for collecting real-time data is necessary but not sufficient because of their expensive cost of implementation. It is also a disadvantage that such technologies, for practical reasons, only provide local information. Some methods should then be applied to expand this local information to large spatial extent. These methods currently suffer from the following limitations: (i) the relationship between missing data and the estimation accuracy, both cannot be easily determined and (ii) the calculations on large area is computationally expensive in particular when time evolution is considered. Given a dynamic traffic simulation coupled with an emission model, a novel approach to this problem is taken by applying selection techniques that can identify the most relevant locations to estimate the network vehicle emissions in various spatial and temporal scales. This work explores the use of different statistical methods both naïve and smart, as tools for selecting the most relevant traffic and emission information on a network to determine the total values at any scale. This work also highlights some cautions when such traffic-emission coupled method is used to quantify emissions due the traffic. Using the COPERT IV emission functions at various spatial-temporal scales induces a bias depending on traffic conditions, in comparison to the original scale (driving cycles). This bias observed in our simulations, has been quantified in function of traffic indicators (mean speed). It also has been demonstrated to have a double origin: the emission functions’ convexity and the traffic variables covariance
Sangpetchsong, K. "The application of relative navigation to civil air traffic management". Thesis, Cranfield University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341128.
Texto completoKendrick, Christine M. "Improving the Roadside Environment through Integrating Air Quality and Traffic-Related Data". PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/3086.
Texto completoLibros sobre el tema "Air traffic data"
United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., ed. Flight deck benefits of integrated data link communication. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.
Buscar texto completoUnited States. Air Traffic Operations Service. Data communications. [Washington, D.C.?]: U.S. Dept. of Transportation, Federal Aviation Administration, 1989.
Buscar texto completoCrawford, Jason A. Modal emissions modeling with real traffic data. College Station, Tex: Texas Transportation Institute, Texas A&M University System, 1999.
Buscar texto completoCenter, Ames Research, ed. Design and evaluation of an advanced air-ground data-link system for air traffic control. Moffett Field, Calif: NASA, Ames Research Center, 1992.
Buscar texto completoCenter, Ames Research, ed. Design and evaluation of an advanced air-ground data-link system for air traffic control. Moffett Field, Calif: NASA, Ames Research Center, 1992.
Buscar texto completoPhillips, Charles T. Integration of air traffic databases: A case study. Washington, DC: Operations Research Service, Federal Aviation Administration, 1995.
Buscar texto completoUnited States. Air Traffic Service. Data communications. [Washington, D.C.?]: U.S. Dept. of Transportation, Federal Aviation Administration, Air Traffic Service, 1986.
Buscar texto completoKnox, Charles E. Flight tests with a data link used for air traffic control information exchange. Hampton, Va: Langley Research Center, 1991.
Buscar texto completoAlan, Yost, United States. Federal Aviation Administration. Office of Aviation Research. y John A. Volpe National Transportation Systems Center (U.S.), eds. Controller and pilot error in airport operations: A review of previous research and analysis of safety data. Washington, DC: Federal Aviation Administration, Office of Aviation Research, 2001.
Buscar texto completoCardosi, Kim M. Controller and pilot error in airport operations: A review of previous research and analysis of safety data. Washington, DC: Federal Aviation Administration, Office of Aviation Research, 2001.
Buscar texto completoCapítulos de libros sobre el tema "Air traffic data"
Zanin, Massimiliano, Andrew Cook y Seddik Belkoura. "Data Science". En Complexity Science in Air Traffic Management, 105–29. Burlington, VT : Ashgate, [2016] |: Routledge, 2016. http://dx.doi.org/10.4324/9781315573205-7.
Texto completoZakaria, Zainuddin y Sun Woh Lye. "Unearthing Air Traffic Control Officer Strategies from Simulated Air Traffic Data". En Human Interaction, Emerging Technologies and Future Systems V, 364–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85540-6_46.
Texto completoTemme, Annette, Ingrid Gerdes y Roland Winkler. "Computational Intelligence in Air Traffic Management". En Computational Intelligence in Intelligent Data Analysis, 285–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32378-2_20.
Texto completoBesada, Juan A., Guillermo Frontera, Ana M. Bernardos y Gonzalo de Miguel. "Adaptive Data Fusion for Air Traffic Control Surveillance". En Lecture Notes in Computer Science, 118–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21222-2_15.
Texto completoRehm, Frank, Frank Klawonn y Rudolf Kruse. "Single Cluster Visualization to Optimize Air Traffic Management". En Studies in Classification, Data Analysis, and Knowledge Organization, 319–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-70981-7_36.
Texto completoZiv, Alexander, Ruwim Berkowicz, Eugene Genikhovich, Finn Palmgren y Ekaterina Yakovleva. "Analysis of the St. Petersburg Traffic Data Using the OSPM Model". En Urban Air Quality — Recent Advances, 297–310. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0312-4_21.
Texto completoLane, S. E. J. "The Implementation and Impact of Automatic Data Processing on UK Military ATC Operations". En Automation and Systems Issues in Air Traffic Control, 47–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76556-8_5.
Texto completoNguyen, Binh Thanh, Pham Lu Quang Minh, Huynh Vu Minh Nguyet, Do Huu Phuoc, Pham Dinh Tai y Huy Truong Dinh. "Intelligent Urban Transportation System to Control Road Traffic with Air Pollution Orientation". En Future Data and Security Engineering, 211–21. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91387-8_14.
Texto completoŠvec, Jan y Luboš Šmídl. "Semantic Entity Detection in the Spoken Air Traffic Control Data". En Speech and Computer, 394–401. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11581-8_49.
Texto completoShi, Feng, Peng Cheng, Rui Geng y Mo Yang. "An Air Traffic Flow Analysis System Using Historical Radar Data". En Recent Advances in Computer Science and Information Engineering, 541–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25766-7_72.
Texto completoActas de conferencias sobre el tema "Air traffic data"
Muszka, Tibor y Peter Szabó. "Copernicus Satellite Data and Air Traffic Management". En 2024 New Trends in Aviation Development (NTAD), 102–5. IEEE, 2024. https://doi.org/10.1109/ntad63796.2024.10850205.
Texto completozhou, zhihui, Haiyan Chen, Yirui Fu y Ligang Yuan. "Air traffic complexity assessment based on multiscale spatio-temporal data". En Fourth International Conference on Intelligent Traffic Systems and Smart City (ITSSC 2024), editado por Hao Chen y Wei Shangguan, 2. SPIE, 2025. https://doi.org/10.1117/12.3050626.
Texto completoS, Sivamurugan, Vedapriya N, Vijayashree K y Nithya P. "Road Traffic Forecasting Using Air Pollution and Atmospheric Data". En 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), 1–5. IEEE, 2024. https://doi.org/10.1109/icpects62210.2024.10780058.
Texto completoMomtaz, Soufiane, Otmane Idrissi, Abdelmajid Bousselham y Mohammed Mestari. "Comparing Lateral and Vertical Spacing Action Applied To Arrival Air Traffic". En 2024 Sixth International Conference on Intelligent Computing in Data Sciences (ICDS), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icds62089.2024.10756306.
Texto completoChen, Xiaoguang, Hao Li, Yumeng Zhou y Meng Li. "Discussion on Data Classification Technology for Data Security in Air Traffic Management Information Systems". En 2024 2nd International Conference on Intelligent Communication and Networking (ICN), 139–43. IEEE, 2024. https://doi.org/10.1109/icn64251.2024.10865942.
Texto completoAvagyan, Garik, Juan C. Armijos, Carson K. Leung, Jasmine J. Tabuzo, Aivee F. Teodocio y Alfredo Cuzzocrea. "An Environmental Data Science Solution for Data Analytics Exploration of Traffic Interaction on Air Quality". En 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC), 1800–1805. IEEE, 2024. http://dx.doi.org/10.1109/compsac61105.2024.00284.
Texto completoYu, Shasha, Yijun Chen y Xuejun Zhang. "Insight into complex mega-system: Examining the Evolution of Air Traffic Research". En 2024 IEEE 4th International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), 1225–34. IEEE, 2024. https://doi.org/10.1109/iciba62489.2024.10869283.
Texto completoKhamlae, Ponlawat, Chollakorn Nimpattanavong, Worawat Choensawat y Kingkarn Sookhanaphibarn. "Visualization System for Air Traffic data". En 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE). IEEE, 2020. http://dx.doi.org/10.1109/gcce50665.2020.9291971.
Texto completoRehm, Frank, Frank Klawonn, Georg Russ y Rudolf Kruse. "Modern Data Visualization for Air Traffic Management". En NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society. IEEE, 2007. http://dx.doi.org/10.1109/nafips.2007.383804.
Texto completoComitz, Paul y Avinash Pinto. "A Software Factory for Air Traffic Data". En 2006 ieee/aiaa 25TH Digital Avionics Systems Conference. IEEE, 2006. http://dx.doi.org/10.1109/dasc.2006.313758.
Texto completoInformes sobre el tema "Air traffic data"
Kendrick, Christine. Improving the Roadside Environment through Integrating Air Quality and Traffic-Related Data. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.3081.
Texto completoKwon, Jaymin, Yushin Ahn y Steve Chung. Spatio-Temporal Analysis of the Roadside Transportation Related Air Quality (STARTRAQ) and Neighborhood Characterization. Mineta Transportation Institute, agosto de 2021. http://dx.doi.org/10.31979/mti.2021.2010.
Texto completoEdwards, Lulu, Charles Weiss, J. Newman, Fred Nichols, L. Coffing y Quint Mason. Corrosion and performance of dust palliatives : laboratory and field studies. Engineer Research and Development Center (U.S.), septiembre de 2021. http://dx.doi.org/10.21079/11681/42125.
Texto completoPinchuk, O. P., O. M. Sokolyuk, O. Yu Burov, Evgeniy Lavrov, Svitlana Shevchenko y Valeriia Aksakovska. ICT for training and evaluation of the solar impact on aviation safety. CEUR Workshop Proceedings, 2020. http://dx.doi.org/10.33407/lib.naes.722580.
Texto completoHartle, Jennifer C., Ossama (Sam) A. Elrahman, Cara Wang, Daniel A. Rodriguez, Yue Ding y Matt McGahan. Assessing Public Health Benefits of Replacing Freight Trucks with Cargo Cycles in Last Leg Delivery Trips in Urban Centers. Mineta Transportation Institute, junio de 2022. http://dx.doi.org/10.31979/mti.2022.1952.
Texto completoBobashev, Georgiy, R. Joey Morris, Elizabeth Costenbader y Kyle Vincent. Assessing network structure with practical sampling methods. RTI Press, mayo de 2018. http://dx.doi.org/10.3768/rtipress.2018.op.0049.1805.
Texto completoBain, Rachel, David Young, Marin Kress, Katherine Chambers y Brandan Scully. US port connectivity and ramifications for maintenance of South Atlantic Division ports. Engineer Research and Development Center (U.S.), enero de 2023. http://dx.doi.org/10.21079/11681/46385.
Texto completoKress, Marin, David Young, Katherine Chambers y Brandan Scully. Measuring maritime connectivity to Puerto Rico and the Virgin Islands using Automatic Identification System (AIS) data. Engineer Research and Development Center (U.S.), agosto de 2023. http://dx.doi.org/10.21079/11681/47495.
Texto completoOlstad, Tyra, Brian Peterson, J. M. Hutchinson, J. Beeco y Damon Joyce. Exploring spatial patterns of overflights at Bryce Canyon National Park. National Park Service, 2024. http://dx.doi.org/10.36967/2304315.
Texto completoSakhare, Rahul Suryakant, Jairaj Desai, Wyatt Woker, Howell Li, Jijo K. Mathew, Justin Mahlberg, Enrique D. Saldivar-Carranza, Deborah Horton y Darcy M. Bullock. Connected Vehicle-Centric Dashboards for TMC of the Future. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317642.
Texto completo