Tesis sobre el tema "Air pollution modelling"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Air pollution modelling".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Yan, Haojie. "Bayesian spatial modelling of air pollution". Thesis, University of Bath, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541668.
Texto completoAntonacci, Gianluca. "Air pollution modelling over complex topography". Doctoral thesis, University of Trento, 2004. http://eprints-phd.biblio.unitn.it/612/1/Gianluca_Antonacci-2004.pdf.
Texto completoSurapipith, Vanisa. "Air pollution in northern Czech Republic". Thesis, University of East Anglia, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251568.
Texto completoLuhar, Ashok Kumar. "Random walk modelling of air pollution dispersion". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387006.
Texto completoZhong, Jian. "Modelling air pollution within a street canyon". Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6491/.
Texto completoPark, Jin Young. "Microscopic modelling of air pollution from road traffic". Thesis, Imperial College London, 2005. http://hdl.handle.net/10044/1/11308.
Texto completoVienneau, Danielle Marie. "Spatial modelling of air pollution for exposure assessment". Thesis, Imperial College London, 2006. http://hdl.handle.net/10044/1/8283.
Texto completoOldham, M. A. "Statistical modelling of asthma and air pollution data". Thesis, Swansea University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638363.
Texto completoChin, Chi-pang Henry. "Receptor modelling of particulates pollution in Hong Kong by chemical mass balance /". Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18736063.
Texto completoGupta, Shivam. "Spatial modelling of air pollution for open smart cities". Doctoral thesis, Universitat Jaume I, 2018. http://hdl.handle.net/10803/666745.
Texto completoHalf of the world’s population already lives in cities, and by 2050 two-thirds of the world’s population are expected to further move into urban areas. This urban growth leads to various environmental, social and economic challenges in cities, hampering the Quality of Life (QoL). Although recent trends in technologies equip us with various tools and techniques that can help in improving quality of life, air pollution remains the ‘biggest environmental health risk’ for decades, impacting individuals’ quality of life and well-being according to World Health Organisation (WHO). Many efforts have been made to measure air quality, but the sparse arrangement of monitoring stations and the lack of data currently make it challenging to develop systems that can capture within-city air pollution variations. To solve this, flexible methods that allow air quality monitoring using easily accessible data sources at the city level are desirable. The present thesis seeks to widen the current knowledge concerning detailed air quality monitoring by developing approaches that can help in tackling existing gaps in the literature. The thesis presents five contributions which address the issues mentioned above. The first contribution is the choice of a statistical method which can help in utilising existing open data and overcoming challenges imposed by the bigness of data for detailed air pollution monitoring. The second contribution concerns the development of optimisation method which helps in identifying optimal locations for robust air pollution modelling in cities. The third contribution of the thesis is also an optimisation method which helps in initiating systematic volunteered geographic information (VGI) campaigns for detailed air pollution monitoring by addressing sparsity and scarcity challenges of air pollution data in cities. The fourth contribution is a study proposing the involvement of housing companies as a stakeholder in the participatory framework for air pollution data collection, which helps in overcoming certain gaps existing in VGI-based approaches. Finally, the fifth contribution is an open-hardware system that aids in collecting vehicular traffic data using WiFi signal strength. The developed hardware can help in overcoming traffic data scarcity in cities, which limits detailed air pollution monitoring. All the contributions are illustrated through case studies in Muenster and Stuttgart. Overall, the thesis demonstrates the applicability of the developed approaches for enabling air pollution monitoring at the city-scale under the broader framework of the open smart city and for urban health research.
Tranmer, Nigel R. "Air pollution monitoring and modelling in RTH East Derbyshire". Thesis, Sheffield Hallam University, 1985. http://shura.shu.ac.uk/20451/.
Texto completoTang, Ho Kin Robert. "Space and time modelling of intra-urban air pollution". Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/28077.
Texto completoDracoulides, Demosthenes Anastasios. "Air pollution modelling for the greater Cape Town region". Master's thesis, University of Cape Town, 1994. http://hdl.handle.net/11427/9632.
Texto completoLimited research on dispersion modelling for the Cape Town metropolitan area has been undertaken. This thesis deals with air-pollution aspects in relation to dispersion modelling, as well as with the input requirements and application of a dispersion model in the Greater Cape Town region. An EPA approved Gaussian plume model, the Industrial Source Complex Short Term 2 (ISCST2), was chosen for the pollution simulation. The model requires one point meteorological measurements and can accommodate multiple point, line and area sources. Meteorological data used in the study were collected from D. F. Malan airport for the years 1991 and 1992. However, required parameters, such as the mixing height and the atmospheric stability class, are not readily available and thus needed to be calculated. Three methods for determining the mixing heights and three methods for determining atmospheric stability class were used in the model and the accuracy for each combination was assessed. Appropriate emission information for use with dispersion modelling is not available for the Greater Cape Town area. Therefore, the compilation of an emission inventory formed a considerable part of this study. Emission data from the large industries was collected with the collaboration of the Cape Town City Council's Air Pollution Control and of the Air Pollution Group of the Western Cape Regional Services Council. The rest of the sources (i.e. residential, vehicular and industrial), were grouped into areas, and their emissions were based on their fuel consumption.
Collins, Susan. "A GIS approach to modelling traffic related air pollution". Thesis, University of Huddersfield, 1998. http://eprints.hud.ac.uk/id/eprint/4843/.
Texto completoWong, Ming-hong Daniel. "A study of passive sampling and modelling techniques for urban air pollution determination /". Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B2093385X.
Texto completoGyarmati-Szabo, Janos. "Statistical extreme value modelling to study roadside air pollution episodes". Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.551267.
Texto completoFraser, Andrea Ruth. "Deploymont of Eulerial Modelling to Analyse London Air Pollution Episodes". Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506159.
Texto completoPannullo, Francesca Giuseppina. "Spatial modelling of air pollution, deprivation and mortality in Scotland". Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8415/.
Texto completoGulliver, John. "Space-time modelling of exposure to air pollution using GIS". Thesis, University of Northampton, 2002. http://nectar.northampton.ac.uk/2810/.
Texto completo馬時樂 y Sze-lok Stefan Ma. "Statistical modelling of daily mortality and air pollutant concentrations". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B31244592.
Texto completoWong, Ming-hong Daniel y 黃明康. "A study of passive sampling and modelling techniques for urban air pollution determination". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B30252325.
Texto completoSingh, Rakesh Bhushan. "Modelling and measurement of particulate pollution from motor vehicles". Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389355.
Texto completoFarias, Ellies Fernando Eugenio. "Air pollution exposure and integrated assessment modelling round London's Heathrow airport". Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424920.
Texto completoNamdeo, Anil Kumar. "Modelling the emission and dispersion of air pollution from motor vehicles". Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294728.
Texto completoAssimakopoulos, Vasiliki. "Numerical modelling of dispersion of atmospheric pollution in and above urban canopies". Thesis, Imperial College London, 2002. http://hdl.handle.net/10044/1/8046.
Texto completo廖俊豪 y Chun-ho Liu. "Numerical modelling of atmospheric boundary layer with application to air pollutant dispersion". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31239018.
Texto completoShaddick, Gavin. "Statistical methodological aspects of modelling relationships between air pollution, temperature and health". Thesis, Imperial College London, 2002. http://hdl.handle.net/10044/1/11388.
Texto completoJohnston, Peter Rowland. "A GIS supported methodology for air pollution modelling in the minerals industry". Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286410.
Texto completoLiu, Yi. "Incorporating high-dimensional exposure modelling into studies of air pollution and health". Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.646141.
Texto completoPearce, Dora. "Spatial modelling of the relationship between respiratory admissions and ambient air pollution". Thesis, University of Ballarat, 2002. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/66804.
Texto completoMaster of Information Technology by Research
Pearce, Dora. "Spatial modelling of the relationship between respiratory admissions and ambient air pollution". University of Ballarat, 2002. http://archimedes.ballarat.edu.au:8080/vital/access/HandleResolver/1959.17/15388.
Texto completoMaster of Information Technology by Research
Ride, D. J. "Modelling fluctuations in the concentration of neutrally buoyant substances in the atmosphere". Thesis, University of Liverpool, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381357.
Texto completoArciszewska, C. "An evaluation of meteorological data needs for urban pollution modelling". Thesis, University of Northampton, 2001. http://nectar.northampton.ac.uk/2815/.
Texto completoValverde, Morales Victor. "Characterization of atmospheric pollution dynamics in Spain by means of air quality modelling". Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/393945.
Texto completoLa contaminación atmosférica genera perjuicios en la salud humana, en los intereses económicos de la sociedad y constituye una amenaza para los ecosistemas y el clima de la Tierra. Avanzar en la comprensión de la dinámica de la contaminación facilita el diseño de estrategias de calidad del aire que reduzcan sus impactos. Esta Tesis Doctoral identifica objetivamente patrones típicos de circulación atmosférica (PT) que afectan a la Península Ibérica (PI) a escala sinóptica para explicar la dinámica de los principales contaminantes gaseosos en España (dióxido de nitrógeno NO2, dióxido de azufre SO2 y ozono O3) mediante modelización de la calidad del aire. Las clasificaciones sinópticas (CS) discretizan el continuo de la circulación atmosférica en un catálogo de PT. Para el período climático 1983-2012, se establece una CS útil para el estudio de la dinámica de la contaminación atmosférica en la PI. Tests de sensibilidad para técnicas automáticas de clasificación (análisis de componentes principales, de correlación y clustering) y para otros factores que afectan a la CS (resolución temporal y espacial, tamaño del dominio, etc.) objetivizan la elección de la configuración que maximiza su calidad. Los seis PT identificados - descritos en términos de frecuencia, persistencia, transiciones y ubicación de los sistemas de presión - son consistentes con la literatura. La evaluación de la estabilidad temporal de la clasificación, mediante un proceso de validación cruzada que compara los PT climáticos con PT identificados en CS anuales, permite identificar un año representativo (2012). Un día representativo de cada PT es elegido gracias a un algoritmo que minimiza las diferencias de la malla de presiones diaria respecto de la del PT promedio. El estudio de la dinámica de NO2, SO2 y O3 se realiza en el día representativo de cada PT focalizando en las principales áreas urbanas de España (Madrid y Barcelona) y en importantes áreas industriales y/o de generación eléctrica (Asturias, bahía de Algeciras). El sistema de CALIdad del aire OPeracional para España (CALIOPE) que proporciona datos de alta resolución sobre emisiones, meteorología y concentración de contaminantes es la principal herramienta utilizada en el estudio. CALIOPE permite cuantificar la contribución de determinadas fuentes de emisión, centrales térmicas de carbón y transporte rodado, mediante un enfoque de fuerza bruta y de asignación de fuentes, respectivamente. Los PT controlan el transporte de SO2/NO2/O3 en áreas atlánticas y continentales de España mientras que en zonas costeras mediterráneas y/o de topografía compleja, una combinación de procesos sinópticos y de mesoescala (brisas marinas y de valle) explica los patrones de contaminación. La contribución de SO2 y NO2 de las centrales térmicas a la concentración en superficie (hasta 55 µg m-3 y 32 µg m-3, respectivamente) se produce principalmente cerca de la fuente (<20 km) por difusión vertical de la emisión cuando ésta se inyecta en la capa límite planetaria. Sin embargo, los penachos de SO2/NO2 pueden alcanzar distancias superiores a los 250 km. La contribución máxima diaria de O3 atribuido a emisiones del transporte rodado de Madrid y Barcelona alcanza el 24% y el 8%, respectivamente pero es particularmente significativa (hasta 80-100 µg m-3 en una hora) a mediodía durante el pico de concentración de O3. El transporte a larga distancia de O3 hacia la PI es controlado por los PT y su contribución es muy importante en el área de influencia de Madrid y Barcelona, en particular bajo los PT fríos (70-96%). Esta Tesis Doctoral ha demostrado que CALIOPE es (1) útil para caracterizar la dinámica 3-D de contaminantes primarios y secundarios en España bajo diferentes PT; (2) capaz de atribuir y cuantificar la contaminación a sus fuentes a través de fuerza bruta y atribución de fuentes; y (3) potencialmente útil en el diseño de estrategias de mitigación específicas que minimicen los impactos de la contaminación atmosférica.
Yuen, Chi-king y 阮志敬. "Feasibility of using neural network for air dispersion modelling". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B31253325.
Texto completoDiab, Anthony Francis. "A comparative evaluation of non-linear time series analysis and singular spectrum analysis for the modelling of air pollution". Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51559.
Texto completoENGLISH ABSTRACT: Air pollution is a major concern III the Cape Metropole. A major contributor to the air pollution problem is road transport. For this reason, a national vehicle emissions study is in progress with the aim of developing a national policy regarding motor vehicle emissions and control. Such a policy could bring about vehicle emission control and regulatory measures, which may have far-reaching social and economic effects. Air pollution models are important tools 10 predicting the effectiveness and the possible secondary effects of such policies. It is therefore essential that these models are fundamentally sound to maintain a high level of prediction accuracy. Complex air pollution models are available, but they require spatial, time-resolved information of emission sources and a vast amount of processing power. It is unlikely that South African cities will have the necessary spatial, time-resolved emission information in the near future. An alternative air pollution model is one that is based on the Gaussian Plume Model. This model, however, relies on gross simplifying assumptions that affect model accuracy. It is proposed that statistical and mathematical analysis techniques will be the most viable approach to modelling air pollution in the Cape Metropole. These techniques make it possible to establish statistical relationships between pollutant emissions, meteorological conditions and pollutant concentrations without gross simplifying assumptions or excessive information requirements. This study investigates two analysis techniques that fall into the aforementioned category, namely, Non-linear Time Series Analysis (specifically, the method of delay co-ordinates) and Singular Spectrum Analysis (SSA). During the past two decades, important progress has been made in the field of Non-linear Time Series Analysis. An entire "toolbox" of methods is available to assist in identifying non-linear determinism and to enable the construction of predictive models. It is argued that the dynamics that govern a pollution system are inherently non-linear due to the strong correlation with weather patterns and the complexity of the chemical reactions and physical transport of the pollutants. In addition to this, a statistical technique (the method of surrogate data) showed that a pollution data set, the oxides of Nitrogen (NOx), displayed a degree of non-linearity, albeit that there was a high degree of noise contamination. This suggested that a pollution data set will be amenable to non-linear analysis and, hence, Non-linear Time Series Analysis was applied to the data set. SSA, on the other hand, is a linear data analysis technique that decomposes the time series into statistically independent components. The basis functions, in terms of which the data is decomposed, are data-adaptive which makes it well suited to the analysis of non-linear systems exhibiting anharmonic oscillations. The statistically independent components, into which the data has been decomposed, have limited harmonic content. Consequently, these components are more amenable to prediction than the time series itself. The fact that SSA's ability has been proven in the analysis of short, noisy non-linear signals prompted the use of this technique. The aim of the study was to establish which of these two techniques is best suited to the modelling of air pollution data. To this end, a univariate model to predict NOx concentrations was constructed using each of the techniques. The prediction ability of the respective model was assumed indicative of the accuracy of the model. It was therefore used as the basis against which the two techniques were evaluated. The procedure used to construct the model and to quantify the model accuracy, for both the Non-linear Time Series Analysis model and the SSA model, was consistent so as to allow for unbiased comparison. In both cases, no noise reduction schemes were applied to the data prior to the construction of the model. The accuracy of a 48-hour step-ahead prediction scheme and a lOO-hour step-ahead prediction scheme was used to compare the two techniques. The accuracy of the SSA model was markedly superior to the Non-linear Time Series model. The paramount reason for the superior accuracy of the SSA model is its adept ability to analyse and cope with noisy data sets such as the NOx data set. This observation provides evidence to suggest that Singular Spectrum Analysis is better suited to the modelling of air pollution data. It should therefore be the analysis technique of choice when more advanced, multivariate modelling of air pollution data is carried out. It is recommended that noise reduction schemes, which decontaminate the data without destroying important higher order dynamics, should be researched. The application of an effective noise reduction scheme could lead to an improvement in model accuracy. In addition to this, the univariate SSA model should be extended to a more complex multivariate model that explicitly encompasses variables such as traffic flow and weather patterns. This will explicitly expose the inter-relationships between the variables and will enable sensitivity studies and the evaluation of a multitude of scenarios.
AFRIKAANSE OPSOMMING: Die hoë vlak van lugbesoedeling in die Kaapse Metropool is kommerwekkend. Voertuie is een van die hoofoorsake, en as gevolg hiervan word 'n landswye ondersoek na voertuigemissie tans onderneem sodat 'n nasionale beleid opgestel kan word ten opsigte van voertuigemissie beheer. Beheermaatreëls van so 'n aard kan verreikende sosiale en ekonomiese uitwerkings tot gevolg hê. Lugbesoedelingsmodelle is van uiterste belang in die voorspelling van die effektiwiteit van moontlike wetgewing. Daarom is dit noodsaaklik dat hierdie modelle akkuraat is om 'n hoë vlak van voorspellingsakkuraatheid te handhaaf. Komplekse modelle is beskikbaar, maar hulle verg tyd-ruimtelike opgeloste inligting van emmissiebronne en baie berekeningsvermoë. Dit is onwaarskynlik dat Suid-Afrika in die nabye toekoms hierdie tydruimtelike inligting van emissiebronne gaan hê. 'n Alternatiewe lugbesoedelingsmodel is dié wat gebaseer is op die "Guassian Plume". Hierdie model berus egter op oorvereenvoudigde veronderstellings wat die akkuraatheid van die model beïnvloed. Daar word voorgestel dat statistiese en wiskundige analises die mees lewensvatbare benadering tot die modellering van lugbesoedeling in die Kaapse Metropool sal wees. Hierdie tegnieke maak dit moontlik om 'n statistiese verwantskap tussen besoedelingsbronne, meteorologiese toestande en besoedeling konsentrasies te bepaal sonder oorvereenvoudigde veronderstellings of oormatige informasie vereistes. Hierdie studie ondersoek twee analise tegnieke wat in die bogenoemde kategorie val, naamlik, Nie-lineêre Tydreeks Analise en Enkelvoudige Spektrale Analise (ESA). Daar is in die afgelope twee dekades belangrike vooruitgang gemaak in die studieveld van Nie-lineêre Tydreeks Analise. 'n Volledige stel metodes is beskikbaar om nie-lineêriteit te identifiseer en voorspellingsmodelle op te stel. Dit word geredeneer dat die dinamika wat 'n besoedelingsisteem beheer nie-lineêr is as gevolg van die sterk verwantskap wat dit toon met weerpatrone asook die kompleksiteit van die chemiese reaksies en die fisiese verplasing van die besoedelingstowwe. Bykomend verskaf 'n statistiese tegniek (die metode van surrogaatdata) bewyse dat 'n lugbesoedelingsdatastel, die okside van Stikstof (NOx), melineêre gedrag toon, alhoewel daar 'n hoë geraasvlak is. Om hierdie rede is die besluit geneem om Nie-lineêre Tydreeks Analise aan te wend tot die datastel. ESA daarenteen, is 'n lineêre data analise tegniek. Dit vereenvoudig die tydreeks tot statistiese onafhanklike komponente. Die basisfunksies, in terme waarvan die data vereenvoudig is, is data-aanpasbaar en dit maak hierdie tegniek gepas vir die analise van nielineêre sisteme. Die statisties onafhanklike komponente het beperkte harmoniese inhoud, met die gevolg dat die komponente aansienlik makliker is om te voorspel as die tydreeks self. ESA se effektiwitiet is ook al bewys in die analise van kort, hoë-graas nie-lineêre seine. Om hierdie redes, is ESA toegepas op die lugbesoedelings data. Die doel van die ondersoek was om vas te stel watter een van die twee tegnieke meer gepas is om lugbesoedelings data te analiseer. Met hierdie doelwit in sig, is 'n enkelvariaat model opgestel om NOx konsentrasies te voorspel met die gebruik van elk van die tegnieke. Die voorspellingsvermoë van die betreklike model is veronderstelom as 'n maatstaf van die model se akkuraatheid te kan dien en dus is dit gebruik om die twee modelle te vergelyk. 'n Konsekwente prosedure is gevolg om beide die modelle te skep om sodoende invloedlose vergelyking te verseker. In albei gevalle was daar geen geraasverminderings-tegnieke toegepas op die data nie. Die akuraatheid van 'n 48-uur voorspellingsmodel en 'n 100-uur voorspellingsmodel was gebruik vir die vergelyking van die twee tegnieke. Daar is bepaal dat die akkuraatheid van die ESA model veel beter as die Nie-lineêre Tydsreeks Analise is. Die hoofrede vir die ESA se hoër akkuraatheid is die model se vermoë om data met hoë geraasvlakke te analiseer. Hierdie ondersoek verskaf oortuigende bewyse dat Enkelvoudige Spektrale Analiese beter gepas is om lugbesoedelingsdata te analiseer en gevolglik moet hierdie tegniek gebruik word as meer gevorderde, multivariaat analises uitgevoer word. Daar word aanbeveel dat geraasverminderings-tegnieke, wat die data kan suiwer sonder om belangrike hoë-orde dinamika uit te wis, ondersoek moet word. Hierdie toepassing van effektiewe geraasverminderings-tegniek sal tot 'n verbetering in model-akkuraatheid lei. Aanvullend hiertoe, moet die enkele ESA model uitgebrei word tot 'n meer komplekse multivariaat model wat veranderlikes soos verkeersvloei en weerpatrone insluit. Dit sal die verhoudings tussen veranderlikes ten toon stel en sal sensitiwiteit-analises en die evaluering van menigte scenarios moontlik maak.
Mediavilla-Sahagun, Antonio. "Integrated assessment modelling applied to particulate concentrations and urban air quality management". Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271718.
Texto completoBaggott, Sarah Louise. "Numerical modelling of atmospheric chemistry in the West Midlands". Thesis, University of Birmingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275667.
Texto completoDabbas, Wafa M. "Modelling vehicle emissions from an urban air-quality perspective:testing vehicle emissions interdependencies". Thesis, The University of Sydney, 2010. http://hdl.handle.net/2123/5866.
Texto completoAl-Abri, Eman S. "Modelling atmospheric ozone concentration using machine learning algorithms". Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/25091.
Texto completoHasham, Faizal A. "Modelling of urban air pollution in the Edmonton Strathconoa Industrial Area using artificial neural networks". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0006/MQ34375.pdf.
Texto completoGupta, Shivam [Verfasser] y Edzer J. [Akademischer Betreuer] Pebesma. "Spatial modelling of air pollution for open smart cities / Shivam Gupta ; Betreuer: Edzer J. Pebesma". Münster : Universitäts- und Landesbibliothek Münster, 2019. http://d-nb.info/1191832236/34.
Texto completoKruse-Plass, Maren. "Effects of atmospheric ammonia on acid deposition : a modelling study". Thesis, Imperial College London, 1991. http://hdl.handle.net/10044/1/8844.
Texto completoElkilani, Amal Sayed. "Modelling indoor volatile organic compound (VOC) levels based on experimentally determined parameters". Thesis, University of Bath, 1999. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299681.
Texto completoLee, Shih-Ho. "Three-dimensional atmospheric modelling of emissions of nitrogen oxides from long-range civil subsonic aircraft at cruise altitude". Thesis, Cranfield University, 1996. http://dspace.lib.cranfield.ac.uk/handle/1826/11400.
Texto completoLeishman, Natalie. "Model Sensitivity, Performance and Evaluation Techniques for The Air Pollution Model in Southeast Queensland". Thesis, Queensland University of Technology, 2005. https://eprints.qut.edu.au/16148/1/Natalie_Leishman.pdf.
Texto completoLeishman, Natalie. "Model Sensitivity, Performance and Evaluation Techniques for The Air Pollution Model in Southeast Queensland". Queensland University of Technology, 2005. http://eprints.qut.edu.au/16148/.
Texto completoHu, Zhiguang. "Binary latent variable modelling in the analysis of health data with multiple binary outcomes in an air pollution study in Hong Kong /". Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19588975.
Texto completoBO, MATTEO. "Study of aerosols air pollution assessments in indoor and outdoor environments based on measuring and modelling approaches". Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2823941.
Texto completoChin, Chi-pang Henry y 錢志鵬. "Receptor modelling of particulates pollution in Hong Kong by chemical mass balance". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31253696.
Texto completo