Literatura académica sobre el tema "AI Generated Text Detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "AI Generated Text Detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "AI Generated Text Detection"
Bhattacharjee, Amrita y Huan Liu. "Fighting Fire with Fire: Can ChatGPT Detect AI-generated Text?" ACM SIGKDD Explorations Newsletter 25, n.º 2 (26 de marzo de 2024): 14–21. http://dx.doi.org/10.1145/3655103.3655106.
Texto completoWang, Yu. "Survey for Detecting AI-generated Content". Advances in Engineering Technology Research 11, n.º 1 (18 de julio de 2024): 643. http://dx.doi.org/10.56028/aetr.11.1.643.2024.
Texto completoA, Nykonenko. "How Text Transformations Affect AI Detection". Artificial Intelligence 29, AI.2024.29(4) (30 de diciembre de 2024): 233–41. https://doi.org/10.15407/jai2024.04.233.
Texto completoSingh, Dr Viomesh, Bhavesh Agone, Aryan More, Aryan Mengawade, Atharva Deshmukh y Atharva Badgujar. "SAVANA- A Robust Framework for Deepfake Video Detection and Hybrid Double Paraphrasing with Probabilistic Analysis Approach for AI Text Detection". International Journal for Research in Applied Science and Engineering Technology 12, n.º 11 (30 de noviembre de 2024): 2074–83. http://dx.doi.org/10.22214/ijraset.2024.65526.
Texto completoVismay Vora, Et al. "A Multimodal Approach for Detecting AI Generated Content using BERT and CNN". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 9 (30 de octubre de 2023): 691–701. http://dx.doi.org/10.17762/ijritcc.v11i9.8861.
Texto completoSubramaniam, Raghav. "Identifying Text Classification Failures in Multilingual AI-Generated Content". International Journal of Artificial Intelligence & Applications 14, n.º 5 (28 de septiembre de 2023): 57–63. http://dx.doi.org/10.5121/ijaia.2023.14505.
Texto completoSushma D S, Pooja C N, Varsha H S, Yasir Hussain y P Yashash. "Detection and Classification of ChatGPT Generated Contents Using Deep Transformer Models". International Research Journal on Advanced Engineering Hub (IRJAEH) 2, n.º 05 (23 de mayo de 2024): 1404–7. http://dx.doi.org/10.47392/irjaeh.2024.0193.
Texto completoAlshammari, Hamed y Khaled Elleithy. "Toward Robust Arabic AI-Generated Text Detection: Tackling Diacritics Challenges". Information 15, n.º 7 (19 de julio de 2024): 419. http://dx.doi.org/10.3390/info15070419.
Texto completoJeremie Busio Legaspi, Roan Joyce Ohoy Licuben, Emmanuel Alegado Legaspi y Joven Aguinaldo Tolentino. "Comparing ai detectors: evaluating performance and efficiency". International Journal of Science and Research Archive 12, n.º 2 (30 de julio de 2024): 833–38. http://dx.doi.org/10.30574/ijsra.2024.12.2.1276.
Texto completoKim, Min-Gyu y Heather Desaire. "Detecting the Use of ChatGPT in University Newspapers by Analyzing Stylistic Differences with Machine Learning". Information 15, n.º 6 (25 de mayo de 2024): 307. http://dx.doi.org/10.3390/info15060307.
Texto completoTesis sobre el tema "AI Generated Text Detection"
Pilana, Liyanage Vijini. "Detection of automatically generated academic Content". Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131014.
Texto completoIn this thesis, we have focused our interest on identifying technologies /methodologies in detecting artificially generated academic content. The principal contributions of this thesis are threefold. First, we built several corpora that are composed of machine generated academic text. In this task we utilized several latest NLG models for the generation task. These corpora contain contents that are fully generated as well as contents that are composed in a hybrid manner (with human intervention). Then, we employed several statistical as well as deep learning models for the detection of generated contents from original (human written) content. In this scenario, we considered detection as a binary classification task. Thus several SOTA classification models were employed. The models were improved or modified using ensembling techniques to gain higher accuracies in detection. Moreover, we made use of several latest detection tools to identify their capability in distinguishing machine generated text. Finally, the generated corpora were tested against knowledge bases to find any mismatches that could help to improve the detection task. The results of this thesis underline the importance of mimicking human behavior in leveraging the generation models as well of using realistic and challenging corpora in future research aimed at detecting artificially generated text. Finally, we would like to highlight the fact that no matter how advanced the technology is, it is always crucial to concentrate on the ethical aspect of making use of such technology
Kurasinski, Lukas. "Machine Learning explainability in text classification for Fake News detection". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20058.
Texto completoNguyen, Minh Tien. "Détection de textes générés automatiquement". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM025/document.
Texto completoAutomatically generated text has been used in numerous occasions with distinct intentions. It can simply go from generated comments in an online discussion to a much more mischievous task, such as manipulating bibliography information. So, this thesis first introduces different methods of generating free texts that resemble a certain topic and how those texts can be used. Therefore, we try to tackle with multiple research questions. The first question is how and what is the best method to detect a fully generated document.Then, we take it one step further to address the possibility of detecting a couple of sentences or a small paragraph of automatically generated text by proposing a new method to calculate sentences similarity using their grammatical structure. The last question is how to detect an automatically generated document without any samples, this is used to address the case of a new generator or a generator that it is impossible to collect samples from.This thesis also deals with the industrial aspect of development. A simple overview of a publishing workflow from a high-profile publisher is presented. From there, an analysis is carried out to be able to best incorporate our method of detection into the production workflow.In conclusion, this thesis has shed light on multiple important research questions about the possibility of detecting automatically generated texts in different setting. Besides the researching aspect, important engineering work in a real life industrial environment is also carried out to demonstrate that it is important to have real application along with hypothetical research
Nahnsen, Thade, Ozlem Uzuner y Boris Katz. "Lexical Chains and Sliding Locality Windows in Content-based Text Similarity Detection". 2005. http://hdl.handle.net/1721.1/30546.
Texto completoLibros sobre el tema "AI Generated Text Detection"
Schuman, Corey. Specimens of AI Generated Text: Aphorism Edition. Independently Published, 2020.
Buscar texto completoCapítulos de libros sobre el tema "AI Generated Text Detection"
Zhang, Yuehan, Yongqiang Ma, Jiawei Liu, Xiaozhong Liu, Xiaofeng Wang y Wei Lu. "Detection Vs. Anti-detection: Is Text Generated by AI Detectable?" En Wisdom, Well-Being, Win-Win, 209–22. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57850-2_16.
Texto completoNajee-Ullah, Ahmad, Luis Landeros, Yaroslav Balytskyi y Sang-Yoon Chang. "Towards Detection of AI-Generated Texts and Misinformation". En Socio-Technical Aspects in Security, 194–205. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10183-0_10.
Texto completoCarré, Marion. "Post-Truth". En Edition Museum, 187–98. Bielefeld, Germany: transcript Verlag, 2023. http://dx.doi.org/10.14361/9783839467107-017.
Texto completo(Mary) Tai, Hsueh-Yung. "Applications of Big Data and Artificial Intelligence". En Digital Health Care in Taiwan, 207–17. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05160-9_11.
Texto completoZhang, Huidi, Junming Gong y Wei Wu. "Artificial Intelligence for Text Generation: An Intellectual Property Perspective". En AI-generated Content, 266–79. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7587-7_23.
Texto completoBokolo, Biodoumoye George, Praise Onyehanere, Ebikela Ogegbene-Ise, Itunu Olufemi y Josiah Nii Armah Tettey. "Leveraging Machine Learning for Crime Intent Detection in Social Media Posts". En AI-generated Content, 224–36. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7587-7_19.
Texto completoGragnaniello, Diego, Francesco Marra y Luisa Verdoliva. "Detection of AI-Generated Synthetic Faces". En Handbook of Digital Face Manipulation and Detection, 191–212. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_9.
Texto completoCozzolino, Davide, Giovanni Poggi, Matthias Nießner y Luisa Verdoliva. "Zero-Shot Detection of AI-Generated Images". En Lecture Notes in Computer Science, 54–72. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72649-1_4.
Texto completoPham, Van Khien y GueeSang Lee. "Robust Text Detection in Natural Scene Images". En AI 2016: Advances in Artificial Intelligence, 720–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50127-7_66.
Texto completoLiu, Chien-Liang y Hung-Yu Kao. "CopyCAT: Masking Strategy Conscious Augmented Text for Machine Generated Text Detection". En Advances in Knowledge Discovery and Data Mining, 367–79. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33374-3_29.
Texto completoActas de conferencias sobre el tema "AI Generated Text Detection"
Chandana, Induri, Oruganti Mariya Reshma, Nerella Geetha Sree, Bommu Jagadeesh Reddy y Syed Shareefunnisa. "Detecting AI Generated Text". En 2024 2nd World Conference on Communication & Computing (WCONF), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/wconf61366.2024.10692028.
Texto completoGupta, Shreya y Deepa Gupta. "Detection and Classification of AI-Generated Text". En 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10724991.
Texto completoJavaji, Prashanth, Pulaparthi Satya Sreeya y Sudha Rajesh. "Detection of AI Generated Text With BERT Model". En 2024 2nd World Conference on Communication & Computing (WCONF), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/wconf61366.2024.10692072.
Texto completoKalra, Mehar Prateek, Ansh Mathur y C. Patvardhan. "Detection of AI-generated Text: An Experimental Study". En 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC), 552–57. IEEE, 2024. http://dx.doi.org/10.1109/aic61668.2024.10731116.
Texto completoKuznetsov, Kristian, Eduard Tulchinskii, Laida Kushnareva, German Magai, Serguei Barannikov, Sergey Nikolenko y Irina Piontkovskaya. "Robust AI-Generated Text Detection by Restricted Embeddings". En Findings of the Association for Computational Linguistics: EMNLP 2024, 17036–55. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.992.
Texto completoGakpetor, Joshua Mawudem, Martin Doe, Michael Yeboah-Sarpong Damoah, Dominic Dalyngton Damoah, John Kingsley Arthur y Michael Tetteh Asare. "AI-Generated and Human-Written Text Detection Using DistilBERT". En 2024 IEEE SmartBlock4Africa, 1–7. IEEE, 2024. https://doi.org/10.1109/smartblock4africa61928.2024.10779494.
Texto completoVacariu, Andrei-Nicolae, Marian Bucos, Marius Otesteanu y Bogdan Dragulescu. "Automated Detection of AI-Generated Text Using LLM Embedding-Driven ML Models". En 2024 International Symposium on Electronics and Telecommunications (ISETC), 1–4. IEEE, 2024. https://doi.org/10.1109/isetc63109.2024.10797258.
Texto completoAggarwal, Kush, Sahib Singh, Parul, Vipin Pal y Satyendra Singh Yadav. "A Framework for Enhancing Accuracy in AI Generated Text Detection Using Ensemble Modelling". En 2024 IEEE Region 10 Symposium (TENSYMP), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/tensymp61132.2024.10752173.
Texto completoKavathekar, Ishan, Anku Rani, Ashmit Chamoli, Ponnurangam Kumaraguru, Amit P. Sheth y Amitava Das. "Counter Turing Test (CT2): Investigating AI-Generated Text Detection for Hindi - Ranking LLMs based on Hindi AI Detectability Index (ADI_hi)". En Findings of the Association for Computational Linguistics: EMNLP 2024, 4902–26. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.282.
Texto completoHuang, Guanhua, Yuchen Zhang, Zhe Li, Yongjian You, Mingze Wang y Zhouwang Yang. "Are AI-Generated Text Detectors Robust to Adversarial Perturbations?" En Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 6005–24. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.acl-long.327.
Texto completo