Artículos de revistas sobre el tema "Aggregation of convection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Aggregation of convection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Shamekh, Sara, Caroline Muller, Jean-Philippe Duvel y Fabio D’Andrea. "How Do Ocean Warm Anomalies Favor the Aggregation of Deep Convective Clouds?" Journal of the Atmospheric Sciences 77, n.º 11 (1 de noviembre de 2020): 3733–45. http://dx.doi.org/10.1175/jas-d-18-0369.1.
Texto completoJung, Hyunju, Ann Kristin Naumann y Bjorn Stevens. "Convective self–aggregation in a mean flow". Atmospheric Chemistry and Physics 21, n.º 13 (8 de julio de 2021): 10337–45. http://dx.doi.org/10.5194/acp-21-10337-2021.
Texto completoBretherton, Christopher S., Peter N. Blossey y Marat Khairoutdinov. "An Energy-Balance Analysis of Deep Convective Self-Aggregation above Uniform SST". Journal of the Atmospheric Sciences 62, n.º 12 (1 de diciembre de 2005): 4273–92. http://dx.doi.org/10.1175/jas3614.1.
Texto completoSchulz, Hauke y Bjorn Stevens. "Observing the Tropical Atmosphere in Moisture Space". Journal of the Atmospheric Sciences 75, n.º 10 (octubre de 2018): 3313–30. http://dx.doi.org/10.1175/jas-d-17-0375.1.
Texto completoTobin, Isabelle, Sandrine Bony y Remy Roca. "Observational Evidence for Relationships between the Degree of Aggregation of Deep Convection, Water Vapor, Surface Fluxes, and Radiation". Journal of Climate 25, n.º 20 (4 de junio de 2012): 6885–904. http://dx.doi.org/10.1175/jcli-d-11-00258.1.
Texto completoWarren, P. B., R. C. Ball y A. Boelle. "Convection-Limited Aggregation". Europhysics Letters (EPL) 29, n.º 4 (1 de febrero de 1995): 339–44. http://dx.doi.org/10.1209/0295-5075/29/4/012.
Texto completoLi, Bo-Wei, Min-Cheng Zhong y Feng Ji. "Laser Induced Aggregation of Light Absorbing Particles by Marangoni Convection". Applied Sciences 10, n.º 21 (3 de noviembre de 2020): 7795. http://dx.doi.org/10.3390/app10217795.
Texto completoMuller, Caroline J. y Isaac M. Held. "Detailed Investigation of the Self-Aggregation of Convection in Cloud-Resolving Simulations". Journal of the Atmospheric Sciences 69, n.º 8 (1 de agosto de 2012): 2551–65. http://dx.doi.org/10.1175/jas-d-11-0257.1.
Texto completoWindmiller, Julia M. y George C. Craig. "Universality in the Spatial Evolution of Self-Aggregation of Tropical Convection". Journal of the Atmospheric Sciences 76, n.º 6 (1 de junio de 2019): 1677–96. http://dx.doi.org/10.1175/jas-d-18-0129.1.
Texto completoBoos, William R., Alexey Fedorov y Les Muir. "Convective Self-Aggregation and Tropical Cyclogenesis under the Hypohydrostatic Rescaling". Journal of the Atmospheric Sciences 73, n.º 2 (27 de enero de 2016): 525–44. http://dx.doi.org/10.1175/jas-d-15-0049.1.
Texto completoYang, Bolei y Zhe-Min Tan. "The Initiation of Dry Patches in Cloud-Resolving Convective Self-Aggregation Simulations: Boundary Layer Dry-Subsidence Feedback". Journal of the Atmospheric Sciences 77, n.º 12 (diciembre de 2020): 4129–41. http://dx.doi.org/10.1175/jas-d-20-0133.1.
Texto completoWing, Allison A., Kevin A. Reed, Masaki Satoh, Bjorn Stevens, Sandrine Bony y Tomoki Ohno. "Radiative–convective equilibrium model intercomparison project". Geoscientific Model Development 11, n.º 2 (2 de marzo de 2018): 793–813. http://dx.doi.org/10.5194/gmd-11-793-2018.
Texto completoZhu, Shichao, Xueliang Guo, Guangxian Lu y Lijun Guo. "Ice Crystal Habits and Growth Processes in Stratiform Clouds with Embedded Convection Examined through Aircraft Observation in Northern China". Journal of the Atmospheric Sciences 72, n.º 5 (1 de mayo de 2015): 2011–32. http://dx.doi.org/10.1175/jas-d-14-0194.1.
Texto completoMuller, Caroline J. y David M. Romps. "Acceleration of tropical cyclogenesis by self-aggregation feedbacks". Proceedings of the National Academy of Sciences 115, n.º 12 (5 de marzo de 2018): 2930–35. http://dx.doi.org/10.1073/pnas.1719967115.
Texto completoStein, T. H. M., C. E. Holloway, I. Tobin y S. Bony. "Observed Relationships between Cloud Vertical Structure and Convective Aggregation over Tropical Ocean". Journal of Climate 30, n.º 6 (6 de marzo de 2017): 2187–207. http://dx.doi.org/10.1175/jcli-d-16-0125.1.
Texto completoRuppert, James H. y Cathy Hohenegger. "Diurnal Circulation Adjustment and Organized Deep Convection". Journal of Climate 31, n.º 12 (junio de 2018): 4899–916. http://dx.doi.org/10.1175/jcli-d-17-0693.1.
Texto completoNotay, Yvan. "Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations". SIAM Journal on Scientific Computing 34, n.º 4 (enero de 2012): A2288—A2316. http://dx.doi.org/10.1137/110835347.
Texto completoWing, Allison A. y Timothy W. Cronin. "Self-aggregation of convection in long channel geometry". Quarterly Journal of the Royal Meteorological Society 142, n.º 694 (9 de septiembre de 2015): 1–15. http://dx.doi.org/10.1002/qj.2628.
Texto completoWing, Allison A., Suzana J. Camargo y Adam H. Sobel. "Role of Radiative–Convective Feedbacks in Spontaneous Tropical Cyclogenesis in Idealized Numerical Simulations". Journal of the Atmospheric Sciences 73, n.º 7 (24 de junio de 2016): 2633–42. http://dx.doi.org/10.1175/jas-d-15-0380.1.
Texto completoEmanuel, Kerry. "Inferences from Simple Models of Slow, Convectively Coupled Processes". Journal of the Atmospheric Sciences 76, n.º 1 (1 de enero de 2019): 195–208. http://dx.doi.org/10.1175/jas-d-18-0090.1.
Texto completoFang, Juan y Fuqing Zhang. "Contribution of Tropical Waves to the Formation of Supertyphoon Megi (2010)". Journal of the Atmospheric Sciences 73, n.º 11 (20 de octubre de 2016): 4387–405. http://dx.doi.org/10.1175/jas-d-15-0179.1.
Texto completoUEDA, Tadao, Kakuji OGAWARA y Souichi SAEKI. "Numerical Study on Particle Aggregation Caused by Natural Convection." Transactions of the Japan Society of Mechanical Engineers Series B 68, n.º 674 (2002): 2735–40. http://dx.doi.org/10.1299/kikaib.68.2735.
Texto completoPauluis, O. y J. Schumacher. "Self-aggregation of clouds in conditionally unstable moist convection". Proceedings of the National Academy of Sciences 108, n.º 31 (18 de julio de 2011): 12623–28. http://dx.doi.org/10.1073/pnas.1102339108.
Texto completoTeschke, O., M. U. Kleinke y M. A. Tenan. "Surface tension-induced convection as a particle aggregation mechanism". Journal of Colloid and Interface Science 151, n.º 2 (julio de 1992): 477–89. http://dx.doi.org/10.1016/0021-9797(92)90495-8.
Texto completoPickles, D. M., D. Ogston y A. G. MacDonald. "Effects of gas bubbling and other forms of convection on platelets in vitro". Journal of Applied Physiology 67, n.º 3 (1 de septiembre de 1989): 1250–55. http://dx.doi.org/10.1152/jappl.1989.67.3.1250.
Texto completoЗагидуллин, Р. Р. "Construction of a three-dimensional modelof the convection of aggregating particles". Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie) 24, n.º 4 (29 de septiembre de 2023): 430–39. http://dx.doi.org/10.26089/nummet.v24r429.
Texto completoMisyura, S. Y., A. V. Bilsky, O. A. Gobyzov, M. N. Ryabov y V. S. Morozov. "Convection in an evaporating drop of aqueous solution at a high concentration of microscopic particles". Journal of Physics: Conference Series 2057, n.º 1 (1 de octubre de 2021): 012100. http://dx.doi.org/10.1088/1742-6596/2057/1/012100.
Texto completoDias, Juliana, Stefan N. Tulich y George N. Kiladis. "An Object-Based Approach to Assessing the Organization of Tropical Convection". Journal of the Atmospheric Sciences 69, n.º 8 (1 de agosto de 2012): 2488–504. http://dx.doi.org/10.1175/jas-d-11-0293.1.
Texto completoWing, Allison A. "Self-Aggregation of Deep Convection and its Implications for Climate". Current Climate Change Reports 5, n.º 1 (25 de enero de 2019): 1–11. http://dx.doi.org/10.1007/s40641-019-00120-3.
Texto completoLaurenzi, Ian J. y Scott L. Diamond. "Bidisperse Aggregation and Gel Formation via Simultaneous Convection and Diffusion". Industrial & Engineering Chemistry Research 41, n.º 3 (febrero de 2002): 413–20. http://dx.doi.org/10.1021/ie010197j.
Texto completoBony, Sandrine, Bjorn Stevens, David Coppin, Tobias Becker, Kevin A. Reed, Aiko Voigt y Brian Medeiros. "Thermodynamic control of anvil cloud amount". Proceedings of the National Academy of Sciences 113, n.º 32 (13 de julio de 2016): 8927–32. http://dx.doi.org/10.1073/pnas.1601472113.
Texto completoJing, Xiaoqin y Bart Geerts. "Dual-Polarization Radar Data Analysis of the Impact of Ground-Based Glaciogenic Seeding on Winter Orographic Clouds. Part II: Convective Clouds". Journal of Applied Meteorology and Climatology 54, n.º 10 (octubre de 2015): 2099–117. http://dx.doi.org/10.1175/jamc-d-15-0056.1.
Texto completoDavis, Christopher A. "The Formation of Moist Vortices and Tropical Cyclones in Idealized Simulations". Journal of the Atmospheric Sciences 72, n.º 9 (1 de septiembre de 2015): 3499–516. http://dx.doi.org/10.1175/jas-d-15-0027.1.
Texto completoGurnis, Michael. "Large-scale mantle convection and the aggregation and dispersal of supercontinents". Nature 332, n.º 6166 (abril de 1988): 695–99. http://dx.doi.org/10.1038/332695a0.
Texto completoNagatani, Takashi. "Convection effect on the diffusion-limited-aggregation fractal: Renormalization-group approach". Physical Review A 37, n.º 11 (1 de junio de 1988): 4461–68. http://dx.doi.org/10.1103/physreva.37.4461.
Texto completoBretherton, C. S. y P. N. Blossey. "Understanding Mesoscale Aggregation of Shallow Cumulus Convection Using Large‐Eddy Simulation". Journal of Advances in Modeling Earth Systems 9, n.º 8 (diciembre de 2017): 2798–821. http://dx.doi.org/10.1002/2017ms000981.
Texto completoKhairoutdinov, Marat F. y Kerry Emanuel. "Intraseasonal Variability in a Cloud-Permitting Near-Global Equatorial Aquaplanet Model". Journal of the Atmospheric Sciences 75, n.º 12 (1 de diciembre de 2018): 4337–55. http://dx.doi.org/10.1175/jas-d-18-0152.1.
Texto completoPritchard, Michael S. y Da Yang. "Response of the Superparameterized Madden–Julian Oscillation to Extreme Climate and Basic-State Variation Challenges a Moisture Mode View". Journal of Climate 29, n.º 13 (27 de junio de 2016): 4995–5008. http://dx.doi.org/10.1175/jcli-d-15-0790.1.
Texto completoRutherford, B., G. Dangelmayr y M. T. Montgomery. "Lagrangian coherent structures in tropical cyclone intensification". Atmospheric Chemistry and Physics Discussions 11, n.º 10 (19 de octubre de 2011): 28125–68. http://dx.doi.org/10.5194/acpd-11-28125-2011.
Texto completoLowman, Julian P. y Carl W. Gable. "Thermal evolution of the mantle following continental aggregation in 3D convection models". Geophysical Research Letters 26, n.º 17 (1 de septiembre de 1999): 2649–52. http://dx.doi.org/10.1029/1999gl008332.
Texto completoWing, Allison A. "Author Correction: Self-Aggregation of Deep Convection and its Implications for Climate". Current Climate Change Reports 5, n.º 3 (12 de julio de 2019): 258. http://dx.doi.org/10.1007/s40641-019-00139-6.
Texto completoWing, Allison A. y Kerry A. Emanuel. "Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations". Journal of Advances in Modeling Earth Systems 6, n.º 1 (5 de febrero de 2014): 59–74. http://dx.doi.org/10.1002/2013ms000269.
Texto completoSingh, Shweta y Norbert Kalthoff. "Process Studies of the Impact of Land-Surface Resolution on Convective Precipitation Based on High-Resolution ICON Simulations". Meteorology 1, n.º 3 (31 de julio de 2022): 254–73. http://dx.doi.org/10.3390/meteorology1030017.
Texto completoVALENZUELA, J. F. y C. MONTEROLA. "CONVECTIVE FLOW-INDUCED SHORT TIMESCALE SEGREGATION IN A DILUTE BIDISPERSE PARTICLE SUSPENSION". International Journal of Modern Physics C 19, n.º 12 (diciembre de 2008): 1829–45. http://dx.doi.org/10.1142/s0129183108013278.
Texto completoLu, Xinyan, Kevin K. W. Cheung y Yihong Duan. "Numerical Study on the Formation of Typhoon Ketsana (2003). Part I: Roles of the Mesoscale Convective Systems". Monthly Weather Review 140, n.º 1 (1 de enero de 2012): 100–120. http://dx.doi.org/10.1175/2011mwr3649.1.
Texto completoRehman, Rabia, Hafiz Abdul Wahab, Nawa Alshammari, Umar Khan y Ilyas Khan. "Aggregation Effects on Entropy Generation Analysis for Nanofluid Flow over a Wedge with Thermal Radiation: A Numerical Investigation". Journal of Nanomaterials 2022 (24 de septiembre de 2022): 1–10. http://dx.doi.org/10.1155/2022/3992590.
Texto completoFang, Juan y Fuqing Zhang. "Initial Development and Genesis of Hurricane Dolly (2008)". Journal of the Atmospheric Sciences 67, n.º 3 (1 de marzo de 2010): 655–72. http://dx.doi.org/10.1175/2009jas3115.1.
Texto completoStechman, Daniel M., Greg M. McFarquhar, Robert M. Rauber, Brian F. Jewett y Robert A. Black. "Composite In Situ Microphysical Analysis of All Spiral Vertical Profiles Executed within BAMEX and PECAN Mesoscale Convective Systems". Journal of the Atmospheric Sciences 77, n.º 7 (1 de julio de 2020): 2541–65. http://dx.doi.org/10.1175/jas-d-19-0317.1.
Texto completoSu, Hui, Christopher S. Bretherton y Shuyi S. Chen. "Self-Aggregation and Large-Scale Control of Tropical Deep Convection: A Modeling Study". Journal of the Atmospheric Sciences 57, n.º 11 (junio de 2000): 1797–816. http://dx.doi.org/10.1175/1520-0469(2000)057<1797:saalsc>2.0.co;2.
Texto completoEllahi, R., M. Hassan y A. Zeeshan. "Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection". Asia-Pacific Journal of Chemical Engineering 11, n.º 2 (24 de noviembre de 2015): 179–86. http://dx.doi.org/10.1002/apj.1954.
Texto completo