Literatura académica sobre el tema "Affine Frequency Division Multiplexing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Affine Frequency Division Multiplexing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Affine Frequency Division Multiplexing"
JIANG, Hui y Dao-ben LI. "Overlapped frequency-time division multiplexing". Journal of China Universities of Posts and Telecommunications 16, n.º 2 (abril de 2009): 8–13. http://dx.doi.org/10.1016/s1005-8885(08)60193-4.
Texto completoCorcoran, Bill, Chen Zhu, Binhuang Song y Arthur J. Lowery. "Folded orthogonal frequency division multiplexing". Optics Express 24, n.º 26 (14 de diciembre de 2016): 29670. http://dx.doi.org/10.1364/oe.24.029670.
Texto completoZheng, Zi Wei. "Iterative Channel Estimation for the Chinese Digital Television Terrestrial Broadcasting Systems with the Multiple-Antenna Receivers". Advanced Engineering Forum 6-7 (septiembre de 2012): 439–44. http://dx.doi.org/10.4028/www.scientific.net/aef.6-7.439.
Texto completoChen, Xiang, Hao Liu, Mai Hu, Lu Yao, Zhenyu Xu, Hao Deng y Ruifeng Kan. "Frequency-Domain Detection for Frequency-Division Multiplexing QEPAS". Sensors 22, n.º 11 (26 de mayo de 2022): 4030. http://dx.doi.org/10.3390/s22114030.
Texto completoJunejo, Naveed Ur Rehman, Mariyam Sattar, Saifullah Adnan, Haixin Sun, Abuzar B. M. Adam, Ahmad Hassan y Hamada Esmaiel. "A Survey on Physical Layer Techniques and Challenges in Underwater Communication Systems". Journal of Marine Science and Engineering 11, n.º 4 (21 de abril de 2023): 885. http://dx.doi.org/10.3390/jmse11040885.
Texto completoShrivastava, Sandeep, Alok Jain y Ram Kumar Soni. "Survey of Orthogonal Frequency Division Multiplexing". International Journal of Engineering Trends and Technology 50, n.º 1 (25 de agosto de 2017): 12–16. http://dx.doi.org/10.14445/22315381/ijett-v50p203.
Texto completoYousefi, Mansoor y Xianhe Yangzhang. "Linear and Nonlinear Frequency-Division Multiplexing". IEEE Transactions on Information Theory 66, n.º 1 (enero de 2020): 478–95. http://dx.doi.org/10.1109/tit.2019.2941479.
Texto completoShieh, W. y C. Athaudage. "Coherent optical orthogonal frequency division multiplexing". Electronics Letters 42, n.º 10 (2006): 587. http://dx.doi.org/10.1049/el:20060561.
Texto completoGokceli, Selahattin y Gunes Karabulut Kurt. "Superposition Coded-Orthogonal Frequency Division Multiplexing". IEEE Access 6 (2018): 14842–56. http://dx.doi.org/10.1109/access.2018.2814050.
Texto completoBledowski, Ian A., Thomas O. H. Charrett, Daniel Francis, Stephen W. James y Ralph P. Tatam. "Frequency-division multiplexing for multicomponent shearography". Applied Optics 52, n.º 3 (11 de enero de 2013): 350. http://dx.doi.org/10.1364/ao.52.000350.
Texto completoTesis sobre el tema "Affine Frequency Division Multiplexing"
Bemani, Ali. "Affine Frequency Division Multiplexing (AFDM) for Wireless Communications". Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS610.pdf.
Texto completoIn the realm of next-generation wireless systems (beyond 5G/6G), the vision is clear: to support a broad range of services and applications. This includes ensuring reliable communications in environments marked by high mobility, such as high-speed railway systems and various vehicular communications. Despite the deployment of various multicarrier techniques like orthogonal frequency division multiplexing (OFDM) and single-carrier frequency division multiple access (SC-FDMA) in standardized communication systems, the challenge persists. These techniques, while effective in time-invariant frequency selective channels, face performance degradation in high mobility scenarios due to the destruction of orthogonality among subcarriers caused by significant Doppler frequency shifts. Addressing this, the search for new, robust modulation techniques is paramount. It stands as a key area of investigation aiming to resolve the reliable communications issue for next-generation wireless networks within doubly-selective wireless channels. In this thesis, a novel solution, affine frequency division multiplexing (AFDM), is proposed. This new chirp-based multicarrier waveform is based on the discrete affine Fourier transform (DAFT), a variant of the discrete Fourier transform characterized with two parameters that can be adapted to better cope with doubly dispersive channels. This thesis provides a comprehensive investigation into the principles of AFDM within high mobility communications. It provides insight into the explicit input-output relation in the DAFT domain, unveiling the consequential impact of AFDM parameters. The manuscript details the precise setting of DAFT parameters, ensuring a full delay-Doppler representation of the channel. Through analytical demonstrations, it asserts that AFDM optimally achieves the diversity order in doubly dispersive channels due to its full delay-Doppler representation. The thesis also proposes two low-complexity detection algorithms for AFDM, taking advantage of its inherent channel sparsity. The first is a low complexity MMSE detector based on LDL factorization. The second is a low complexity iterative decision feedback equalizer (DFE) based on weighted maximal ratio combining (MRC) of the channel impaired input symbols received from different paths. Additionally, the thesis presents an embedded channel estimation strategy for AFDM systems, leveraging AFDM's ability to achieve full delay-Doppler representation of the channel. In this approach, an AFDM frame contains a pilot symbol and data symbols, with zero-padded symbols employed as guard intervals to prevent interference. A practical channel estimation algorithm based on an approximate maximum likelihood (ML) approach and compatible with this pilot scheme is also provided. The thesis concludes by delving into the expanded applications of AFDM, specifically in integrated sensing and communication (ISAC) and extremely high frequency (EHF) band communications. It is demonstrated that to identify all delay and Doppler components linked with the propagation medium, one can use either the full AFDM signal or only its pilot part consisting of one DAFT domain symbol and its guard interval. Furthermore, the chirp nature of AFDM allows for unique and simple self-interference cancellation with a single pilot, eliminating the need for costly full-duplex methods. The thesis also highlights AFDM's efficient performance in high-frequency bands (with or without mobility), where the maximal spreading of its signal in time and frequency ensures a coverage gain. Unlike other waveforms, AFDM not only provides maximal time-frequency spreading but also ensures robust and efficient detection, characterized by one-tap equalization and resilience to carrier frequency offset (CFO) and phase noise
Recio, Adolfo Leon. "Spectrum-Aware Orthogonal Frequency Division Multiplexing". Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/30193.
Texto completoPh. D.
Challakere, Nagaravind. "Carrier Frequency Offset Estimation for Orthogonal Frequency Division Multiplexing". DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1423.
Texto completoZhang, Hua. "Orthogonal Frequency Division Multiplexing for Wireless Communications". Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4960.
Texto completoKim, Dukhyun. "Orthogonal frequency division multiplexing for digital broadcasting". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/13704.
Texto completoBledowski, Ian A. "Frequency-division-multiplexing technique for imaging metrology". Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9286.
Texto completoClark, Alan. "On Coding for Orthogonal Frequency Division Multiplexing Systems". Thesis, University of Canterbury. Electrical and Computer Engineering, 2006. http://hdl.handle.net/10092/1092.
Texto completo李世榮 y Sai-weng Lei. "Adaptive interleaving for orthogonal frequency division multiplexing systems". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31224702.
Texto completoLepley, Jason J. "Frequency stabilisation for dense wavelength division multiplexing systems". Thesis, University of Essex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310059.
Texto completoWang, Samuel Y. "Perfect shuffle optical frequency division multiplexing (PS/OFDM)". Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/14255.
Texto completoLibros sobre el tema "Affine Frequency Division Multiplexing"
Li, Ye y Gordon L. Stüber, eds. Orthogonal Frequency Division Multiplexing for Wireless Communications. Boston: Kluwer Academic Publishers, 2006. http://dx.doi.org/10.1007/0-387-30235-2.
Texto completoJiang, Tao, Yan Zhang y Lingyang Song. Orthogonal frequency division multiple access fundamentals and applications. Boca Raton: Auerbach, 2010.
Buscar texto completoArijon, Ignacio M. Performance of an orthogonal frequency division multiplexing (OFDM) system in frequency selective channels. Manchester: University of Manchester, 1996.
Buscar texto completoJiang, Tao, 1970 Jan. 8-, Song Lingyang y Zhang Yan 1977-, eds. Orthogonal frequency division multiple access fundamentals and applications. Boca Raton: Auerbach, 2010.
Buscar texto completoUnited States. National Telecommunications and Information Administration, ed. Orthogonal frequency division multiplexing: An application to high definition television. [Washington, D.C.?]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1994.
Buscar texto completoMonty, Andro, Vanderaar Mark J y NASA Glenn Research Center, eds. An OFDM system using polyphase filter and DFT architecture for very high data rate applications. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Buscar texto completoWu, Te-Kao. Double-loop frequency-selected surfaces for multifrequency division multiplexing in a dual-reflector antenna. [Washington, DC: National Aeronautics and Space Administration, 1992.
Buscar texto completo1974-, Li Guoqing, ed. OFDM-based broadband wireless networks: Design and optimization. Hoboken, N.J: J. Wiley, 2005.
Buscar texto completoMaxon, David P. The IBOC handbook: Understanding HD radio technology. Boston: Elsevier/Focal Press, 2007.
Buscar texto completoYang, Samuel C. OFDMA system analysis and design. Boston: Artech House, 2010.
Buscar texto completoCapítulos de libros sobre el tema "Affine Frequency Division Multiplexing"
Weik, Martin H. "frequency-division multiplexing". En Computer Science and Communications Dictionary, 647. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7633.
Texto completoLiu, Zhu. "Frequency Division Multiplexing". En Handbook of Computer Networks, 553–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118256053.ch36.
Texto completoWeik, Martin H. "optical frequency-division multiplexing". En Computer Science and Communications Dictionary, 1175. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_13061.
Texto completoHara, Shinsuke. "Orthogonal Frequency Division Multiplexing". En Handbook of Computer Networks, 591–605. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118256053.ch39.
Texto completoIshida, Osamu, Hiromu Toba y Nori Shibata. "Optical frequency division multiplexing systems". En Coherent Lightwave Communications Technology, 129–88. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1308-3_5.
Texto completoKumar, Arvind y Rajoo Pandey. "Orthogonal Frequency Division Multiplexing for IoT". En Electronic Devices and Circuit Design, 243–67. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003145776-15.
Texto completoSong, Jian. "Time-Domain Synchronous Orthogonal Frequency Division Multiplexing". En Encyclopedia of Wireless Networks, 1400–1403. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_167.
Texto completoDarwazeh, Izzat, Ryan C. Grammenos y Tongyang Xu. "Spectrally Efficient Frequency Division Multiplexing for 5G". En 5G Mobile Communications, 261–97. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34208-5_10.
Texto completoSong, Jian. "Time-Domain Synchronous Orthogonal Frequency Division Multiplexing". En Encyclopedia of Wireless Networks, 1–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32903-1_167-1.
Texto completoTsukada, Hiromichi y Ichiro Tsuda. "Memory Retrieval by Means of Frequency Division Multiplexing". En Advances in Cognitive Neurodynamics (V), 755–60. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0207-6_102.
Texto completoActas de conferencias sobre el tema "Affine Frequency Division Multiplexing"
Bemani, Ali, Giampaolo Cuozzo, Nassar Ksairi y Marios Kountouris. "Affine Frequency Division Multiplexing for Next-Generation Wireless Networks". En 2021 17th International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2021. http://dx.doi.org/10.1109/iswcs49558.2021.9562168.
Texto completoBenzine, Wissal, Ali Bemani, Nassar Ksairi y Dirk Slock. "Affine Frequency Division Multiplexing For Communications on Sparse Time-Varying Channels". En GLOBECOM 2023 - 2023 IEEE Global Communications Conference. IEEE, 2023. http://dx.doi.org/10.1109/globecom54140.2023.10437010.
Texto completoGui, Tao, Wasyhun A. Gemechu, Jan-Willem Goossens, Mengdi Song, Stefan Wabnitz, Mansoor I. Yousefi, Hartmut Hafermann, Alan Pak Tao Lau y Yves Jaouën. "Polarization-Division-Multiplexed Nonlinear Frequency Division Multiplexing". En CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.stu4c.3.
Texto completoKabir, Waziha. "Orthogonal Frequency Division Multiplexing (OFDM)". En 2008 China-Japan Joint Microwave Conference (CJMW 2008). IEEE, 2008. http://dx.doi.org/10.1109/cjmw.2008.4772401.
Texto completoCasciati, Sara, Lucia Faravelli y ZhiCong Chen. "Frequency Division Multiplexing Wireless Connection". En 2010 6th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2010. http://dx.doi.org/10.1109/wicom.2010.5601390.
Texto completoKabir, W. "Orthogonal frequency division multiplexing (OFDM)". En China-Ireland International Conference on Information and Communications Technologies (CIICT 2008). IEE, 2008. http://dx.doi.org/10.1049/cp:20080773.
Texto completoChalla, Muralidhar Reddy, Bharath Simha Reddy Eedula, Gnana Pavan Bombothu y Ram Mohan Rao Kanugu. "DFDM — Dynamic frequency division multiplexing". En 2017 7th International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2017. http://dx.doi.org/10.1109/csnt.2017.8418506.
Texto completoFettweis, Gerhard, Marco Krondorf y Steffen Bittner. "GFDM - Generalized Frequency Division Multiplexing". En 2009 IEEE 69th Vehicular Technology Conference Spring. IEEE, 2009. http://dx.doi.org/10.1109/vetecs.2009.5073571.
Texto completoTêtu, Michel y Christine Latrasse. "Absolute frequency control in WDM systems". En Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.254.
Texto completoLepley, Jason J. y A. Shamim Siddiqui. "A frequency-stabilised highly dense WDM comb generator". En Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.182.
Texto completo