Tesis sobre el tema "Aérosols atmosphériques – Environnement"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 19 mejores tesis para su investigación sobre el tema "Aérosols atmosphériques – Environnement".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Pellerin, Geoffrey. "Quantification des vitesses de dépôt par temps sec et documentation des processus d’émission des aérosols sur couvert naturel : du nanomètre au micron". Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1086/document.
Texto completoThe particles emitted into the atmosphere during chronic or accidental release by the nuclear plants can be subjected, after dispersion, to vertical flows by dry weather: dry deposition and resuspension. Vertical flows in dry weather are characterized by the vertical transfer rate, which is the ratio between the particle flux and the atmospheric concentration of the aerosol in the vicinity of the surface. When this speed is positive, it is a dry deposition rate (Vd in m.s-1) and conversely, when it is negative, it is a transmission rate. It is important to study their dry deposition in a prairial environment. Indeed, the products resulting from this environment are a component of the human food chain via livestock. For particles less than 1 μm, there is a lack of experimental data, which results in uncertainty about the results of the models, which can reach up to two orders of magnitude. In addition, there are no in situ deposition rate measurement data available for particles less than 10 nm. These particles are derived from the gas / particle conversion (nucleation) and may relate to certain radionuclides such as iodine (129, 131I).After their deposition, these radionuclides can be resuspended under the effect of the stress submitted by the wind on the canopy. Such a phenomenon is suspected around the Fukushima nuclear power plant. The aerosol resuspension processes are characterized by the vertical transfer rate (m.s-1) but also by the re-suspension coefficient (Ks in m-1) which is the ratio of atmospheric concentration to surface concentration of particles. Relative uncertainties of 2 to 3 orders of magnitude on the resuspension coefficients exist. The resuspension concerns all the particles present on the canopy, whether they are inert or living (fungi, bacteria, yeasts, etc.). Unlike inert particles, these living particles can assimilate and concentrate radionuclides. However, there is very little data on the resuspension of microorganisms and bacteria in particular. In this context, the objectives of the thesis are to quantify the dry deposition rate as a function of the particle size and the main micrometeorological parameters in the range 1.5 nm - 1.2 μm. The second objective is to document the processes of emission of the bacteria
Fally, Sophie. "Composition, propriétés et comportement des aérosols atmosphériques, des brouillards, des rosées et des pluies en région bruxelloise". Doctoral thesis, Universite Libre de Bruxelles, 2001. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211558.
Texto completoL'objectif du présent travail est de déterminer la composition chimique, les propriétés et le comportement des particules et des dépôts humides en Région bruxelloise. On a distingué les aérosols atmosphériques, les brouillards, les rosées (ou givres) récoltés à la fois sur les végétaux et sur un collecteur inerte, les pluies et les dépôts totaux (formés des pluies et des dépôts secs accumulés dans l'entonnoir de collecte en l'absence de pluie). Ce vaste objectif a été réalisé grâce à la collecte de nombreux échantillons sur une échelle de temps suffisante en différents endroits de la capitale, et à l'analyse de ces échantillons par des techniques variées et complémentaires (techniques classiques d'analyse d'échantillons liquides telles que spectrométrie d'absorption et d'émission atomique, chromatographie liquide, colorimétrie, ainsi que microscopie électronique et fluorescence des rayons-X). Trois collecteurs (pour le brouillard, la pluie et la rosée) ont été entièrement conçus et réalisés au laboratoire dans le cadre de ce travail. Les éléments suivants sont analysés: NO3, SO4, NH4, Na, Mg, Al, Si, P, S, CI, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Pb.
Afin de comprendre les causes de la variabilité spatio-temporelle des concentrations, l'influence de paramètres tels que la saison, la direction du vent, et le lieu de prélèvement a été examinée. De plus, dans le cas des pluies et des brouillards, l'étude de l'évolution des concentrations au cours d'un même épisode a permis d'investiguer les processus physico-chimiques qui contrôlent le dépôt humide. Elle a permis d'acquérir une meilleure connaissance des mécanismes d'incorporation des aérosols dans la phase aqueuse et du phénomène de lessivage de l'atmosphère. Tout au long de ce travail, les interactions entre la phase particulaire (aérosols) et les phases liquides (brouillards, rosées, pluies) ont été examinées. Une relation entre les concentrations en éléments dissous et le volume d'eau de l'échantillon a été établie dans le cas des pluies, des rosées et des brouillards. Cette relation traduit un effet de dilution et démontre l'importance du mécanisme de condensation-évaporation des gouttes d'eau. L'importance du phénomène de nucléation des sulfates, nitrates et chlorures d'ammonium constitutifs de la fraction fine de l'aérosol soluble a été démontrée. Ces sels d'ammonium sont formés secondairement par des réactions de conversion gaz-particules. L'abondance des ions ammonium, et l'importance de leur action de neutralisation de l'acidité, constituent une particularité de l'atmosphère bruxelloise.
L'identification des sources de particules et d'éléments en relation avec leurs propriétés chimiques et granulométriques a été réalisée en utilisant divers outils statistiques (corrélations entre éléments, analyse factorielle) et géochimiques (rapports de concentration, facteurs d'enrichissement, granulométrie). Les apports d'origine marine, continentale, biologique et anthropique (trafic, incinération des déchets, processus de combustion) ont ainsi été clairement mis en évidence dans l'aérosol et le brouillard bruxellois.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Percot, Stéphane. "Contribution des retombées atmosphériques aux flux de polluants issus d'un petit bassin versant urbain : cas du Pin Sec à Nantes". Phd thesis, Ecole centrale de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00851955.
Texto completoDubois, Clément. "Impact de la réactivité multiphasique sur la composition et les propriétés physico-chimiques de l’aérosol atmosphérique". Electronic Thesis or Diss., Lyon 1, 2022. http://www.theses.fr/2022LYO10223.
Texto completoUltrafine atmospheric aerosols are among the most abundant in the atmosphere. Their implications on the climate and air quality are proven. The various IPCC reports however, have shown that current knowledge is still insufficient to quantify with precision the impact of aerosols on the climate. These uncertainties come from the complexity of atmospheric aerosols and their importance in cloud formation. Indeed, the formation and evolution of these one in the atmosphere lead to changes their size, chemical composition, morphology, and therefore could have major repercussions on their physicochemical properties. Initially, this thesis work focused on the impact of chemical reactions on the physico-chemical properties of light scattering aerosols. Thus, the reactive uptake of isoprene epoxydiols on sulfated particles has been shown to reduce the backscattered intensity of the aerosols formed. In a second step, the work carried out during this thesis aimed to study the implication of the pressure on the chemistry in the condensed phase of ultrafine aerosols, in particular due to the Young-Laplace pressure which can be important for ultrafine aerosols (d < 100 nm). This thesis work started with the development and optimization of an experimental system to study chemical reactions at high pressure. It was thus demonstrated that the photodegradation reactions (here, for vanillin) could be greatly modified at high pressures comparable to those of ultrafine particles. All the results of this thesis work made it possible to highlight the entanglement of multiphase chemical processes on the physico-chemical properties of atmospheric aerosols
Rojo, Escude-Cofiner Carolina. "Impact environnemental des aérosols formés dans les panaches d'avions : modélisation et application à l'utilisation de carburants alternatifs". Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAF047/document.
Texto completoAircraft emit important amounts of particulate and gaseous matter in the atmosphere contributing on the one hand to local air pollution and on the other hand to the atmospheric radiative forcing and to climate change. Introducing alternative fuels in aviation can be considered as a viable option to reducing the impact of aviation, being economically and environmentally sustainable. These selected biofuels tend to have lower aromatic and sulphur contents inducing a simultaneous reduction in sulphuric acid and soot emissions. However modifying the nature and composition of the fuel used can entail unexpected consequences. It is therefore essential to study and determine the evolution of aerosols in the aircraft plume. To manage this task, a microphysical trajectory box, previously tested with standard kerosene, has been developed. After an assessment concerning the typical emissions from the combustion of biofuels in aviation, simulations have been undertaken in order to predict aerosol evolution. Several microphysical processes have been revised such as droplet homogeneous freezing or the behaviour of organic compounds
Richon, Camille. "Modélisation de l'impact du dépôt d'aérosols sur les cycles biogéochimiques de la mer Méditerranée". Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV105.
Texto completoObservations and experiments showed that aerosol deposition can increase the amount of bioavailable nutrients and favor biological production of the Mediterranean Sea. In this context, the present study yields for the first time a quantification of the effects of aerosol deposition from various sources thanks to the coupled physical-biogeochemical model NEMOMED12/PISCES. This study consists in modeling and analyzing the effects on the Mediterranean biogeochemistry of atmospheric deposition of nitrogen and phosphate from various natural and anthropogenic sources. For this purpose, regional and global atmospheric models representing aerosol deposition were evaluated and selected. The NEMOMED12/PISCES model was modified to take into account these new nutrient sources. The analysis of the simulations showed that atmospheric deposition accounts for approximately 10 % of total external nitrate supply and 5 to 30 % of phosphate supply on average over the entire basin. Aerosol deposition can also increase biological production up to 50 % thanks to the lowering of nutrient limitations. The maximal fertilizing effects are observed during the stratied period which, in the Mediterranean region, is summer. The effects of climate change may be particularly important in sensitive regions such as the Mediterranean. Therefore, the evolutions of basin scale biogeochemistry were evaluated under a climate change scenario. The NEMOMED8/PISCES model was used with physical and biogeochemical forcings for the IPCC A2 climate change scenario. This study shows a reduction in basin scale surface productivity by approximately 10 % triggered by warming and stratification. Nutrient limitations are modified and the Mediterranean Sea sensibility to atmospheric deposition changes. The results of this thesis underline the importance of atmosphere as a nutrient source, in particular for nitrogen and phosphate. Deposition effects vary according to the season and the location. They are more important during the stratied period, when surface water is nutrient limited. Also, any change in biological productivity is quickly transfered along the biological chain. To refine the results, the atmospheric models could be improved and more knowledge on deposition fluxes and physical and chemical transformations of aerosols before and after deposition would be necessary. Moreover, more precise scenarios concerning climate change effects would be necessary in order to study the future evolutions of biogeochemical conditions in the Mediterranean. Finally, the recent developments on the PISCES model make new studies possible in a non redfieldian context. Preliminary results indicate that the productivity of the different phytoplanktonic groups varies with intracellular C/N/P ratios
Tidiga, Mariam. "Contenu et variabilité des aérosols de la stratosphère : impact des éruptions volcaniques sur la période 2013-2019". Electronic Thesis or Diss., Orléans, 2021. http://www.theses.fr/2021ORLE2011.
Texto completoLarge volcanic eruptions affect the climate by injecting sulphur dioxide gas into the stratosphere which is converted to sulphate aerosols. These aerosols have the power to warm the stratosphere, cooling the troposphere by reflecting solar radiation. Since the Pinatubo eruption in 1991, which resulted in a global cooling of 0.4◦C, observations have shown that the stratosphere has been regularly impacted by volcanic eruptions of moderate magnitude on a hemispheric scale, but that these events have been less well documented in the tropics. During our research, we carried out simulations by the global model WACCM-CARMA, including chemical and microphysical cycles of Sulphur to study the variability of stratospheric aerosol content in the tropics over the period 2013-2019. The simulations show that the volcanic events of the period (Kelud, Calbuco, Ambae, Raikoke and Ulawun) have significantly influenced the aerosol layer in the tropics, either by direct injection or by transport from distant latitudes
Rouspard, Pierre. "Etude phénoménologique du dépôt sec d’aérosols en milieu urbain : Influence des propriétés des surfaces, de la turbulence et des conditions météorologiques". Thesis, Rouen, INSA, 2013. http://www.theses.fr/2013ISAM0007/document.
Texto completoAerosol dry deposition is not much known for urban areas due to the lack of data. Knowledge on this phenomenon is necessary to understand pollutant fluxes in cities and to estimate inhabitant exposition to ionizing radiation of radioactive aerosols. A data providing could enable to enhance dry deposition models for these areas. An original experimental approach is performed to study submicron aerosol dry deposition on urban surfaces. Wind tunnel coupled to in situ experiments give results to study different physical phenomen on governing dry deposition. Dry deposition velocities are measured using aerosol tracers. These data are associated to turbulent and meteorological measured conditions. This database permits to classify the principal physical phenomenon for each experiment type. Finally, different phenomenon must be considered for chronic and acute exposition of urban surfaces to atmospheric particles
Gallou, Guillaume. "Etude et optimisation de la spectroscopie sur plasma induit par laser (LIBS) pour le suivi en continu des polluants émis par les sources fixes". Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10153.
Texto completoIn the context of the prevention of atmospheric pollution and air quality improvement, measurement of the stationary sources emission appears as a key component to evaluate the concentration of one or many pollutants and also to estimate the annual flows. Analytical techniques of atmospheric pollutants must on principle permit to control the safety concentration limits fixed by order. To that end, laserinduced breakdown spectroscopy (LIBS) appears to be a good technique. Indeed, this multielementary analysis technique requires no sample preparation, is quantitative, fast (< 1 min), and can be performed at remote distance. The objective of this work, supported by ADEME and run by CEA and INERIS, is to develop and optimise LIBS technique to measure in-situ and in real time metallic pollutants in particulate forms emitted by stationary sources. During this study, two experimental approaches were carried out simultaneously: the first one, realized in CEA, consists to collect micrometric metallic particles generated by ultrasonic nebulizer on filter and then to analyse those filters with adapted LIBS device. In parallel, the second device is realised in INERIS to analyse the same particles by focusing the laser directly (direct analysis) on the flowing aerosol inside an analysis cell. To evaluate correctly the analysis LIBS devices as well as the acquisition and data treatment protocols adapted to aerosols analysis, specific experimental setup of generating and characterising metallic aerosol is designed and implemented. Then, experimental results are optimized and compared. After those developments and tests in laboratory, in-situ measurements are realized in the "Centre Technique des Industries de la Fonderie (CTIF)" in Sèvres. Measurements were performed on melting process to analyse in-situ and in real time concentration of metallic particles emitted during copper melt
Richon, Camille. "Modélisation de l'impact du dépôt d'aérosols sur les cycles biogéochimiques de la mer Méditerranée". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV105/document.
Texto completoObservations and experiments showed that aerosol deposition can increase the amount of bioavailable nutrients and favor biological production of the Mediterranean Sea. In this context, the present study yields for the first time a quantification of the effects of aerosol deposition from various sources thanks to the coupled physical-biogeochemical model NEMOMED12/PISCES. This study consists in modeling and analyzing the effects on the Mediterranean biogeochemistry of atmospheric deposition of nitrogen and phosphate from various natural and anthropogenic sources. For this purpose, regional and global atmospheric models representing aerosol deposition were evaluated and selected. The NEMOMED12/PISCES model was modified to take into account these new nutrient sources. The analysis of the simulations showed that atmospheric deposition accounts for approximately 10 % of total external nitrate supply and 5 to 30 % of phosphate supply on average over the entire basin. Aerosol deposition can also increase biological production up to 50 % thanks to the lowering of nutrient limitations. The maximal fertilizing effects are observed during the stratied period which, in the Mediterranean region, is summer. The effects of climate change may be particularly important in sensitive regions such as the Mediterranean. Therefore, the evolutions of basin scale biogeochemistry were evaluated under a climate change scenario. The NEMOMED8/PISCES model was used with physical and biogeochemical forcings for the IPCC A2 climate change scenario. This study shows a reduction in basin scale surface productivity by approximately 10 % triggered by warming and stratification. Nutrient limitations are modified and the Mediterranean Sea sensibility to atmospheric deposition changes. The results of this thesis underline the importance of atmosphere as a nutrient source, in particular for nitrogen and phosphate. Deposition effects vary according to the season and the location. They are more important during the stratied period, when surface water is nutrient limited. Also, any change in biological productivity is quickly transfered along the biological chain. To refine the results, the atmospheric models could be improved and more knowledge on deposition fluxes and physical and chemical transformations of aerosols before and after deposition would be necessary. Moreover, more precise scenarios concerning climate change effects would be necessary in order to study the future evolutions of biogeochemical conditions in the Mediterranean. Finally, the recent developments on the PISCES model make new studies possible in a non redfieldian context. Preliminary results indicate that the productivity of the different phytoplanktonic groups varies with intracellular C/N/P ratios
Zhang, Yuan. "Impacts of anthropogenic aerosols on the terrestrial carbon cycle". Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS123.pdf.
Texto completoAnthropogenic atmospheric aerosols have been recognized to have significantly affected the climate system through their interactions with radiation and cloud during the last decades. Besides these well-known butpoorly-understood physical processes in the atmosphere, recent studies reported strong influences of aerosols on the carbon cycle, especially its terrestrial component. The changes in carbon cycle will further alter the climate through the climate-carbon feedback. It remains uncertain how much anthropogenic aerosols perturb the land carbon cycle. This thesis aims to quantify and attribute the impacts of anthropogenic aerosols on the terrestrial cycle using a modeling approach. In Chapter 2, a set of offline simulations using the ORCHIDEE land surface model driven by climate fields from different CMIP5 generation climate models were performed to investigate the impacts of anthropogenic aerosols on the land C cycle through their impacts on climate. The results indicate an increased cumulative land C sink of 11.6-41.8 PgC during 1850-2005 due to anthropogenic aerosols. The increase in net biome production (NBP) is mainly found in the tropics and northern mid latitudes. Aerosol-induced cooling is the main factor driving this NBP changes. At high latitudes, aerosol-induced cooling caused a stronger decrease in gross primary production (GPP) than in total ecosystem respiration (TER), leading to lower NBP. At mid latitudes, cooling‐induced decrease in TER is stronger than for GPP, resulting in a net NBP increase. At low latitudes, NBP was also enhanced due to the cooling‐induced GPP increase, but regional precipitation decline in response to anthropogenic aerosol emissions may negate the effect of temperature. As climate models currently disagree on how aerosol emissions affect tropical precipitation, the precipitation change in response to aerosols becomes the main source of uncertainty in aerosol-caused C flux changes. The results suggest that better understanding and simulation of how anthropogenic aerosols affect precipitation in climate models is required for a more accurate attribution of aerosol effects on the terrestrial carbon cycle
Pierre, Caroline. "Variabilité interannuelle des émissions d'aérosols minéraux en zone semi-aride sahélienne". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00921688.
Texto completoAbidi, Ehgere. "Sources des aérosols en milieu urbain : cas de la ville de Paris". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4794.
Texto completoKnowing the sources of airborne fine particulate matter in ambient area became a major concern since their adverse effects on health were. Then, knowing in detail the nature and the sources of the fine particles (PM) is necessary to quantify the relative importance of the emissions on the total PM concentration. In this context, the main objective is to better know the chemical composition and the sources of the organic aerosol. This works is integrated within the MEGAPOLI framework. Two intensive campaigns were led in Paris region in summer and in winter at an urban (LHVP) and a suburban (SIRTA) sites. During the both sampling campaigns, a complete PM2.5 chemical characterization was made. The contributions of the PM2.5 primary sources were calculated by CMB modelling and the results were intercompared with those obtained by the AMS/PMF and the radiocarbon 14C approaches. The CMB analysis showed that in winter, the main contributing sources were primary, dominated by vehicular exhaust and biomass burning. In summer, the PM2.5 ambient concentrations were mainly governed by secondary species. According to the approach based on the secondary organic markers, the traditional biogenic SOA contribution to the PM2.5 mass was. The both CMB and AMS-PMF approaches comparison showed that in winter, the differences were particularly observed for both major organic aerosol sources: biomass burning and vehicular exhaust. In summer, the differences between both approaches were less visible. The comparisons of the CMB modeling approach results with the radiocarbon 14C measurements, a totally independent approach, show a very good agreement between both approaches
El, Haddad Imad. "Fraction primaire et secondaire de l'aérosol organique : méthodologies et application à un environnement urbain méditerranéen, Marseille". Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10029.
Texto completoTougher particulate matter regulations around the world and especially in Europe point out the need of source apportionment studies in order to better understand the different primary and secondary sources of organic aerosol, a major fraction of particulate matter that remains not well constrained. The work carried out in this thesis takes part of the FORMES project whose main objective is the source apportionment of the organic aerosol using different approaches, including mainly CMB modelling, AMS/PMF and radiocarbon (14C) measurements. The aerosol characterisation was performed within two intensive field campaigns conducted in two contrasted urban environments: Grenoble during winter and Marseille during summer. The present work focuses on the Marseille case study that presents a particularly complex environment, combining an intense photochemistry to a mixture of primary emissions including shipping and industrial emissions. Primary organic carbon (POC) apportioned using CMB modelling contributed on average for only 22% and was dominated by vehicular emissions accounting on average for 17% of OC. Even though, industrial emissions contribute for only 2.3% of the total OC, they are associated with ultrafine particles and high concentrations of Polycyclic Aromatic Hydrocarbons and heavy metals such as Pb, Ni and V, which most likely relate them with acute health outcomes. Whereas in Grenoble the organic aerosol was dominated by wood burning smoke (70% of OC), this source was negligible in Marseille contributing for less than 1% of OC. The main result from this source apportionment exercise is that 78% of OC mass cannot be attributed to the major primary sources and remains un-apportioned; this fraction is mostly associated with secondary organic aerosol. Radiocarbon measurements suggest that more than 70% of this fraction is of modern origins, assigned predominantly to biogenic secondary organic carbon (BSOC). Therefore, contributions from three traditional BSOC precursors, isoprene, α-pinene and β-caryophellene, were considered using a marker based approach. The aggregate contribution from BSOC derived from these precursors was estimated at only 4.2% of total OC. As a result, these estimates underpredict the high loading of OC. This underestimation can be associated with (i) uncertainties underlying the marker-based approach, (ii) presence of other SOC precursors and (iii) further processing of fresh SOC, as indicated by organosulfates (RSO4) and HUmic LIke Substances (HULIS) measurements. This HULIS can contribute up to 40% of the unattributed OC
Berthelot, Brice. "Conception de capteurs dédiés à la surveillance particulaire biologique des environnements intérieurs". Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1170.
Texto completoNowadays people pass 90% of their time in closed spaces, and in consequence are exposed to indoor and outdoor particulate matter for which no reference value is available. These pollutants include biological particles and in particular fungal spores, the most numerous living particles and most diverse on the air we breathe (Nolard, 1997). Ubiquitous and harmful, fungal particulate pollution is implicated in the occurrence of many diseases including immuno-allergic diseases. In the context of the monitoring of the microbiological quality of air in indoor spaces, this thesis aims to provide first design elements of an individual diagnostic device dedicated to the exposure assessment of allergenic bio-contaminants focusing in particular on airborne fungal pollution. This research relies on the technical and scientific expertise of CSTB, ESIEE Paris and Université Paris-Est for fungal detection, miniaturization of measurement instrumentation and aerosol physics. Thus, this work is built around a system architecture based on three main elements: the capture and selection of particles according to their surface physical and chemical properties, the particles mass quantification and the identification of the nature of the particle using chemical analysis. These elements relate to many topics covered during the thesis work. In this way, the first topic consists in studying the adhesion of conidia to surfaces to better understand the determinants of this physical phenomenon and evaluate the energies involved. Subsequent results were used during a second stage of this work, to design a MEMS-type silicon microbalance considering the particle-resonator interaction. By this mean the issue was to solve some scientific challenges identified in the literature, such non-uniform sensitivity over the entire device surface or nonlinear frequency responses due to the added mass. Such an approach has also allowed evaluating the performance expected for such sensors. The last aspect of this research focused on the identification of biological airborne particles chemically combining pyrolysis of biological entities of interest, and gas chromatography and mass spectrometry (Py-GC/MS). On this occasion, a collaborative work engaged with the "Réseau National de Surveillance Aérobiologique" allowed to experience the technological solution and our methodology since another class of particles was considered: pollens. The analysis of volatile organic compounds obtained from Py-GC/MS characterization of micro-fungi and pollens demonstrated the existence of a specific chemical signature for each biological particle class. Thereafter, it was then possible to establish a variety of chemical markers lists for phyla and different species of the contaminants studied. The relevance of these markers has been further tested in an in-situ assay
Calec, Nevenick. "Dépôt sec des aérosols submicroniques sur une surface liquide en mouvement". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4770/document.
Texto completoWhether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts on the environment and the population. This work focuses on the characterization and modeling of dry deposition of submicronic aerosols on liquid surfaces in motion such as rivers. The evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity. Due to the lack of data on the dry deposition of submicronic aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA-IRPHE wind tunnel. These experiments have given many dry deposition velocities for different configurations characterized according to wind, current, ambient temperature and relative humidity, the liquid surface deformations (measured significant wave height) and size distribution of aerosols released. The modeling part was to adapt the model to resistance. Slinn and Slinn (1980). The main adjustments made by this work have been to take specific account of the different classes of particle size distribution, the spectrum variation as a function of hygroscopicity, and mechanisms of aggregation. It is integrated mechanisms of diffusiophoresis and thermophoresis, respectively produced by the evaporation of water and the temperature gradient at the air-water interface
Delaby, Stéphane. "Étude expérimentale du transport des aérosols dans un espace clos ventilé et impact des principales stratégies d'épuration microbiologique de l'air sur l'exposition des occupants". Thesis, Paris Est, 2008. http://www.theses.fr/2008PEST0071.
Texto completoExposure to bioaerosols in indoor environments is associated with a wide range of adverse effects on health including infectious diseases, acute toxic effects and allergies. In order to guard against this phenomenon, the ventilation and air treatment industry has developed and marketed many air control strategies. However, at present, there is no methodology adapted to the evaluation of the relevance of these strategies. The aim of this research work was to characterize, in a first time, the progress of microbiological aerosol from the original source, to their eventual inhalation by person exposed, considering their dissemination through the indoor environments. Secondly, the work consisted of determining the efficiency of air cleaner devices applied to control indoor air quality. For this point, a global approach of evaluation in 3 steps was adopted, consisting of studying the efficiency of the epuration principle implemented, determining the intrinsic performance of the systems in dynamic conditions and their impact on the exposure level of the exposed persons. The tests carried out with air cleaner devices (filtration and photocatalysis) have shown that the intrinsic performance wasn’t able to estimate the beneficial impact of these systems on the exposure level of people when there were applied in indoor environments. So the intrinsic performance of devices is not the single impact factor, the airflow promoted by the device is also a factor to consider. Moreover, the characterization of indoor airflows and airborne particles transport is essential to define a coherent strategy of air treatment
Sylvestre, Alexandre. "Caractérisation de l'aérosol industriel et quantification de sa contribution aux PM2.5 atmosphériques". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4714/document.
Texto completoIn order to limit the impact of air quality on human health, public authorities need reliable and accurate information on the sources contribution. So, the identification of the main sources of PM2.5 is the first step to adopt efficient mitigation policies. This work carry out in this thesis take place in this issue and was to determine the main sources of PM2.5 inside an industrial area. To determinate the main sources of PM2.5, two campaigns were lead to collect daily PM2.5 to: 1/ determine the enrichment of atmospheric pollutants downwind from the main industrial activities and 2/ collect PM2.5 in urban areas characteristic of the population exposition. Results allowed to obtain very representative profiles for the main industrial activities implanted inside the studied area. ME-2 analysis, combined to radiocarbon measurements, allowed to highlight the very high impact of Biomass Burning sources for all the PM2.5 pollution events recorded from early autumn to March. This study showed that industrial sources, even if they are the major sources during spring and summer, are not the major PM2.5 driver. However, this study highlights that industrial sources impact significantly the aerosol population (size, composition, etc.) in the studied area
Delhomme, Olivier. "Etude de la variabilité et de l'évolution de la composition chimique de l'aérosol organique en fonction du lieu et de la période de prélèvement". Université Louis Pasteur (Strasbourg) (1971-2008), 2008. http://www.theses.fr/2008STR13040.
Texto completoThe purpose of this study is intended to obtain a better knowledge of the chemical composition of atmospheric aerosols in urban areas. The study targets the evaluation of the airborne particulate phase contamination by various families of pollutants compounds, by carrying out seasonal and daily follow-up of their concentration levels. The PM10 particles sampling was carried out simultaneously related to the Besancon, Spicheren and Strasbourg target areas, all conducted by taking air samples on a daily basis, collecting four consecutive batches, each of a duration of six hours along a day. The most of the concentrations levels collected from the Strasbourg area are higher than those observed on the Besancon and Spicheren areas. Seasonal follow-up of the contamination by compounds made it possible to highlight that apart some exceptions, the studied concentrations, are in general higher the winter, than during milder seasons. Generally, regarding the summer period, it appears from the study that the main source of these compounds seems especially related to the automobile traffic. In winter period, this main source is completed by domestic heating, and for the Strasbourg area, by an apparent industrial source by airborne transportation. A source of emission related to the activities of kitchen is also present all over the year, mostly on the Strasbourg area. Last of all, related to the compounds only emitted from the biomass combustion, the contribution from domestic heating using wood in cold season, increases the abundance of the studied compounds