Artículos de revistas sobre el tema "Adversarial Defence"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Adversarial Defence".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Jiang, Guoteng, Zhuang Qian, Qiu-Feng Wang, Yan Wei y Kaizhu Huang. "Adversarial Attack and Defence on Handwritten Chinese Character Recognition". Journal of Physics: Conference Series 2278, n.º 1 (1 de mayo de 2022): 012023. http://dx.doi.org/10.1088/1742-6596/2278/1/012023.
Texto completoHuang, Bo, Zhiwei Ke, Yi Wang, Wei Wang, Linlin Shen y Feng Liu. "Adversarial Defence by Diversified Simultaneous Training of Deep Ensembles". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de mayo de 2021): 7823–31. http://dx.doi.org/10.1609/aaai.v35i9.16955.
Texto completoPawlicki, Marek y Ryszard S. Choraś. "Preprocessing Pipelines including Block-Matching Convolutional Neural Network for Image Denoising to Robustify Deep Reidentification against Evasion Attacks". Entropy 23, n.º 10 (3 de octubre de 2021): 1304. http://dx.doi.org/10.3390/e23101304.
Texto completoLal, Sheeba, Saeed Ur Rehman, Jamal Hussain Shah, Talha Meraj, Hafiz Tayyab Rauf, Robertas Damaševičius, Mazin Abed Mohammed y Karrar Hameed Abdulkareem. "Adversarial Attack and Defence through Adversarial Training and Feature Fusion for Diabetic Retinopathy Recognition". Sensors 21, n.º 11 (7 de junio de 2021): 3922. http://dx.doi.org/10.3390/s21113922.
Texto completoJohnston, Ed. "The adversarial defence lawyer: Myths, disclosure and efficiency—A contemporary analysis of the role in the era of the Criminal Procedure Rules". International Journal of Evidence & Proof 24, n.º 1 (26 de agosto de 2019): 35–58. http://dx.doi.org/10.1177/1365712719867972.
Texto completoXu, Enhui, Xiaolin Zhang, Yongping Wang, Shuai Zhang, Lixin Lu y Li Xu. "WordRevert: Adversarial Examples Defence Method for Chinese Text Classification". IEEE Access 10 (2022): 28832–41. http://dx.doi.org/10.1109/access.2022.3157521.
Texto completoBruce, Neil. "Defence expenditures by countries in allied and adversarial relationships". Defence Economics 1, n.º 3 (mayo de 1990): 179–95. http://dx.doi.org/10.1080/10430719008404661.
Texto completoStriletska, Oksana. "Establishment and Development of the Adversarial Principle in the Criminal Process". Path of Science 7, n.º 7 (31 de julio de 2021): 1010–16. http://dx.doi.org/10.22178/pos.72-2.
Texto completoMacfarlane, Julie. "The Anglican Church’s sexual abuse defence playbook". Theology 124, n.º 3 (mayo de 2021): 182–89. http://dx.doi.org/10.1177/0040571x211008547.
Texto completoZhang, Bowen, Benedetta Tondi, Xixiang Lv y Mauro Barni. "Challenging the Adversarial Robustness of DNNs Based on Error-Correcting Output Codes". Security and Communication Networks 2020 (12 de noviembre de 2020): 1–11. http://dx.doi.org/10.1155/2020/8882494.
Texto completoHuang, Shize, Xiaowen Liu, Xiaolu Yang, Zhaoxin Zhang y Lingyu Yang. "Two Improved Methods of Generating Adversarial Examples against Faster R-CNNs for Tram Environment Perception Systems". Complexity 2020 (22 de septiembre de 2020): 1–10. http://dx.doi.org/10.1155/2020/6814263.
Texto completoKehoe, Aidan, Peter Wittek, Yanbo Xue y Alejandro Pozas-Kerstjens. "Defence against adversarial attacks using classical and quantum-enhanced Boltzmann machines †". Machine Learning: Science and Technology 2, n.º 4 (15 de julio de 2021): 045006. http://dx.doi.org/10.1088/2632-2153/abf834.
Texto completoGao, Wei, Yunqing Liu, Yi Zeng, Quanyang Liu y Qi Li. "SAR Image Ship Target Detection Adversarial Attack and Defence Generalization Research". Sensors 23, n.º 4 (17 de febrero de 2023): 2266. http://dx.doi.org/10.3390/s23042266.
Texto completoJohnston, Ed. "All Rise for the Interventionist". Journal of Criminal Law 80, n.º 3 (junio de 2016): 201–13. http://dx.doi.org/10.1177/0022018316647870.
Texto completoPoptchev, Peter. "NATO-EU Cooperation in Cybersecurity and Cyber Defence Offers Unrivalled Advantages". Information & Security: An International Journal 45 (2020): 35–55. http://dx.doi.org/10.11610/isij.4503.
Texto completoLi, Jipeng, Xinyi Li y Chenjing Zhang. "Analysis on Security and Privacy-preserving in Federated Learning". Highlights in Science, Engineering and Technology 4 (26 de julio de 2022): 349–58. http://dx.doi.org/10.54097/hset.v4i.923.
Texto completoDuff, Peter. "Disclosure in Scottish Criminal Procedure: Another Step in an Inquisitorial Direction?" International Journal of Evidence & Proof 11, n.º 3 (julio de 2007): 153–80. http://dx.doi.org/10.1350/ijep.2007.11.3.153.
Texto completoMao, Junjie, Bin Weng, Tianqiang Huang, Feng Ye y Liqing Huang. "Research on Multimodality Face Antispoofing Model Based on Adversarial Attacks". Security and Communication Networks 2021 (9 de agosto de 2021): 1–12. http://dx.doi.org/10.1155/2021/3670339.
Texto completoSingh, Abhijit y Biplab Sikdar. "Adversarial Attack and Defence Strategies for Deep-Learning-Based IoT Device Classification Techniques". IEEE Internet of Things Journal 9, n.º 4 (15 de febrero de 2022): 2602–13. http://dx.doi.org/10.1109/jiot.2021.3138541.
Texto completoAmbos, Kai. "International criminal procedure: "adversarial", "inquisitorial" or mixed?" International Criminal Law Review 3, n.º 1 (2003): 1–37. http://dx.doi.org/10.1163/156753603767877084.
Texto completoDuddu, Vasisht. "A Survey of Adversarial Machine Learning in Cyber Warfare". Defence Science Journal 68, n.º 4 (26 de junio de 2018): 356. http://dx.doi.org/10.14429/dsj.68.12371.
Texto completoHasneziri, Luan. "The Adversarial Proceedings Principle in the Civil Process". European Journal of Marketing and Economics 4, n.º 1 (15 de mayo de 2021): 88. http://dx.doi.org/10.26417/548nth20i.
Texto completoLeitch, Shirley y Juliet Roper. "AD Wars: Adversarial Advertising by Interest Groups in a New Zealand General Election". Media International Australia 92, n.º 1 (agosto de 1999): 103–16. http://dx.doi.org/10.1177/1329878x9909200112.
Texto completoSun, Guangling, Yuying Su, Chuan Qin, Wenbo Xu, Xiaofeng Lu y Andrzej Ceglowski. "Complete Defense Framework to Protect Deep Neural Networks against Adversarial Examples". Mathematical Problems in Engineering 2020 (11 de mayo de 2020): 1–17. http://dx.doi.org/10.1155/2020/8319249.
Texto completoMcCarthy, Andrew, Essam Ghadafi, Panagiotis Andriotis y Phil Legg. "Functionality-Preserving Adversarial Machine Learning for Robust Classification in Cybersecurity and Intrusion Detection Domains: A Survey". Journal of Cybersecurity and Privacy 2, n.º 1 (17 de marzo de 2022): 154–90. http://dx.doi.org/10.3390/jcp2010010.
Texto completoHuang, Xiaowei, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min Wu y Xinping Yi. "A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability". Computer Science Review 37 (agosto de 2020): 100270. http://dx.doi.org/10.1016/j.cosrev.2020.100270.
Texto completoRaj, Rohit, Jayant Kumar y Akriti Kumari. "HOW AI USED TO PREVENT CYBER THREATS". International Research Journal of Computer Science 9, n.º 7 (31 de julio de 2022): 146–51. http://dx.doi.org/10.26562/irjcs.2022.v0907.002.
Texto completoHodgson, Jacqueline. "Constructing the Pre-Trial Role of the Defence in French Criminal Procedure: An Adversarial Outsider in an Inquisitorial Process?" International Journal of Evidence & Proof 6, n.º 1 (enero de 2002): 1–16. http://dx.doi.org/10.1177/136571270200600101.
Texto completoPark, Sanglee y Jungmin So. "On the Effectiveness of Adversarial Training in Defending against Adversarial Example Attacks for Image Classification". Applied Sciences 10, n.º 22 (14 de noviembre de 2020): 8079. http://dx.doi.org/10.3390/app10228079.
Texto completoRavishankar, Monica, D. Vijay Rao y C. R. S. Kumar. "A Game Theoretic Software Test-bed for Cyber Security Analysis of Critical Infrastructure". Defence Science Journal 68, n.º 1 (18 de diciembre de 2017): 54. http://dx.doi.org/10.14429/dsj.68.11402.
Texto completoPochylá, Veronika. "Previous witness testimony as immediate or urgent action and its admissibility in court". International and Comparative Law Review 15, n.º 2 (1 de diciembre de 2015): 145–59. http://dx.doi.org/10.1515/iclr-2016-0041.
Texto completoMoulinou, Iphigenia. "Explicit and implicit discursive strategies and moral order in a trial process". Journal of Language Aggression and Conflict 7, n.º 1 (12 de junio de 2019): 105–32. http://dx.doi.org/10.1075/jlac.00021.mou.
Texto completoFatehi, Nina, Qutaiba Alasad y Mohammed Alawad. "Towards Adversarial Attacks for Clinical Document Classification". Electronics 12, n.º 1 (28 de diciembre de 2022): 129. http://dx.doi.org/10.3390/electronics12010129.
Texto completoesh, Rishik, Ru pasri, Tamil selvan, Yogana rasimman y Saran Sujai. "Intrusion of Attacks in Puppet and Zombie Attacking and Defence Model Using BW-DDOS". International Academic Journal of Innovative Research 9, n.º 1 (28 de junio de 2022): 13–19. http://dx.doi.org/10.9756/iajir/v9i1/iajir0903.
Texto completoGröndahl, Tommi y N. Asokan. "Effective writing style transfer via combinatorial paraphrasing". Proceedings on Privacy Enhancing Technologies 2020, n.º 4 (1 de octubre de 2020): 175–95. http://dx.doi.org/10.2478/popets-2020-0068.
Texto completoHossain‐McKenzie, Shamina, Kaushik Raghunath, Katherine Davis, Sriharsha Etigowni y Saman Zonouz. "Strategy for distributed controller defence: Leveraging controller roles and control support groups to maintain or regain control in cyber‐adversarial power systems". IET Cyber-Physical Systems: Theory & Applications 6, n.º 2 (9 de abril de 2021): 80–92. http://dx.doi.org/10.1049/cps2.12006.
Texto completoLiu, Ninghao, Mengnan Du, Ruocheng Guo, Huan Liu y Xia Hu. "Adversarial Attacks and Defenses". ACM SIGKDD Explorations Newsletter 23, n.º 1 (26 de mayo de 2021): 86–99. http://dx.doi.org/10.1145/3468507.3468519.
Texto completoRosenberg, Ishai, Asaf Shabtai, Yuval Elovici y Lior Rokach. "Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain". ACM Computing Surveys 54, n.º 5 (junio de 2021): 1–36. http://dx.doi.org/10.1145/3453158.
Texto completoHuang, Yang, Yuling Chen, Xuewei Wang, Jing Yang y Qi Wang. "Promoting Adversarial Transferability via Dual-Sampling Variance Aggregation and Feature Heterogeneity Attacks". Electronics 12, n.º 3 (3 de febrero de 2023): 767. http://dx.doi.org/10.3390/electronics12030767.
Texto completoImam, Niddal H. y Vassilios G. Vassilakis. "A Survey of Attacks Against Twitter Spam Detectors in an Adversarial Environment". Robotics 8, n.º 3 (4 de julio de 2019): 50. http://dx.doi.org/10.3390/robotics8030050.
Texto completoLuo, Yifan, Feng Ye, Bin Weng, Shan Du y Tianqiang Huang. "A Novel Defensive Strategy for Facial Manipulation Detection Combining Bilateral Filtering and Joint Adversarial Training". Security and Communication Networks 2021 (2 de agosto de 2021): 1–10. http://dx.doi.org/10.1155/2021/4280328.
Texto completoGong, Xiaopeng, Wanchun Chen y Zhongyuan Chen. "Intelligent Game Strategies in Target-Missile-Defender Engagement Using Curriculum-Based Deep Reinforcement Learning". Aerospace 10, n.º 2 (31 de enero de 2023): 133. http://dx.doi.org/10.3390/aerospace10020133.
Texto completoHeffernan, Liz. "The participation of victims in the trial process". Northern Ireland Legal Quarterly 68, n.º 4 (21 de diciembre de 2017): 491–504. http://dx.doi.org/10.53386/nilq.v68i4.60.
Texto completoZheng, Tianhang, Changyou Chen y Kui Ren. "Distributionally Adversarial Attack". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 2253–60. http://dx.doi.org/10.1609/aaai.v33i01.33012253.
Texto completoYao, Yuan, Haoxi Zhong, Zhengyan Zhang, Xu Han, Xiaozhi Wang, Kai Zhang, Chaojun Xiao, Guoyang Zeng, Zhiyuan Liu y Maosong Sun. "Adversarial Language Games for Advanced Natural Language Intelligence". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 16 (18 de mayo de 2021): 14248–56. http://dx.doi.org/10.1609/aaai.v35i16.17676.
Texto completoSilva, Samuel Henrique, Arun Das, Adel Aladdini y Peyman Najafirad. "Adaptive Clustering of Robust Semantic Representations for Adversarial Image Purification on Social Networks". Proceedings of the International AAAI Conference on Web and Social Media 16 (31 de mayo de 2022): 968–79. http://dx.doi.org/10.1609/icwsm.v16i1.19350.
Texto completoZeng, Huimin, Chen Zhu, Tom Goldstein y Furong Huang. "Are Adversarial Examples Created Equal? A Learnable Weighted Minimax Risk for Robustness under Non-uniform Attacks". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de mayo de 2021): 10815–23. http://dx.doi.org/10.1609/aaai.v35i12.17292.
Texto completoZhang, Ziwei y Dengpan Ye. "Defending against Deep-Learning-Based Flow Correlation Attacks with Adversarial Examples". Security and Communication Networks 2022 (27 de marzo de 2022): 1–11. http://dx.doi.org/10.1155/2022/2962318.
Texto completoShi, Lin, Teyi Liao y Jianfeng He. "Defending Adversarial Attacks against DNN Image Classification Models by a Noise-Fusion Method". Electronics 11, n.º 12 (8 de junio de 2022): 1814. http://dx.doi.org/10.3390/electronics11121814.
Texto completoLuo, Zhirui, Qingqing Li y Jun Zheng. "A Study of Adversarial Attacks and Detection on Deep Learning-Based Plant Disease Identification". Applied Sciences 11, n.º 4 (20 de febrero de 2021): 1878. http://dx.doi.org/10.3390/app11041878.
Texto completo