Literatura académica sobre el tema "Adjoint discret"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Adjoint discret".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Adjoint discret"
Zhao, Shunliu, Matthew G. Russell, Amir Hakami, Shannon L. Capps, Matthew D. Turner, Daven K. Henze, Peter B. Percell et al. "A multiphase CMAQ version 5.0 adjoint". Geoscientific Model Development 13, n.º 7 (2 de julio de 2020): 2925–44. http://dx.doi.org/10.5194/gmd-13-2925-2020.
Texto completoNi, Angxiu. "Backpropagation in hyperbolic chaos via adjoint shadowing". Nonlinearity 37, n.º 3 (30 de enero de 2024): 035009. http://dx.doi.org/10.1088/1361-6544/ad1aed.
Texto completoCapps, S. L., D. K. Henze, A. Hakami, A. G. Russell y A. Nenes. "ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA". Atmospheric Chemistry and Physics Discussions 11, n.º 8 (19 de agosto de 2011): 23469–511. http://dx.doi.org/10.5194/acpd-11-23469-2011.
Texto completoHekmat, Mohamad Hamed y Masoud Mirzaei. "Development of Discrete Adjoint Approach Based on the Lattice Boltzmann Method". Advances in Mechanical Engineering 6 (1 de enero de 2014): 230854. http://dx.doi.org/10.1155/2014/230854.
Texto completoLarour, Eric, Jean Utke, Anton Bovin, Mathieu Morlighem y Gilberto Perez. "An approach to computing discrete adjoints for MPI-parallelized models applied to Ice Sheet System Model 4.11". Geoscientific Model Development 9, n.º 11 (1 de noviembre de 2016): 3907–18. http://dx.doi.org/10.5194/gmd-9-3907-2016.
Texto completoWu, Hangkong, Xuanlong Da, Dingxi Wang y Xiuquan Huang. "Multi-Row Turbomachinery Aerodynamic Design Optimization by an Efficient and Accurate Discrete Adjoint Solver". Aerospace 10, n.º 2 (21 de enero de 2023): 106. http://dx.doi.org/10.3390/aerospace10020106.
Texto completoTowara, Markus, Michel Schanen y Uwe Naumann. "MPI-Parallel Discrete Adjoint OpenFOAM". Procedia Computer Science 51 (2015): 19–28. http://dx.doi.org/10.1016/j.procs.2015.05.181.
Texto completoNiwa, Yosuke, Hirofumi Tomita, Masaki Satoh, Ryoichi Imasu, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda et al. "A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) – Part 1: Offline forward and adjoint transport models". Geoscientific Model Development 10, n.º 3 (17 de marzo de 2017): 1157–74. http://dx.doi.org/10.5194/gmd-10-1157-2017.
Texto completoAgarwal, Ravi P., Safi S. Rabie y Samir H. Saker. "On Discrete Weighted Lorentz Spaces and Equivalent Relations between Discrete ℓp-Classes". Fractal and Fractional 7, n.º 3 (14 de marzo de 2023): 261. http://dx.doi.org/10.3390/fractalfract7030261.
Texto completoCao, Junying, Zhongqing Wang y Ziqiang Wang. "A Uniform Accuracy High-Order Finite Difference and FEM for Optimal Problem Governed by Time-Fractional Diffusion Equation". Fractal and Fractional 6, n.º 9 (28 de agosto de 2022): 475. http://dx.doi.org/10.3390/fractalfract6090475.
Texto completoTesis sobre el tema "Adjoint discret"
Dittmann, Florian. "Study and Optimisation of Supersonic Ejectors for Heat Recovery Refrigeration Cycles". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLM029.
Texto completoSupersonic ejectors for heat recovery refrigeration cycles are modelled, studied and optimised based on numerical fluid mechanics and the discrete adjoint method. The study is supported by an analysis of the relations between the complex flow phenomena, the thermodynamic limits and the cycle performance. A generalised 1D model is developed and used to conceive ejectors and predict their entrainment ratio in order to determine the optimal cycle conditions. The resolution of the Reynolds averaged Navier-Stokes equations complemented by the k-ω SST turbulence model and a cubic equation of state for the refrigerant R134a enables the flow analysis and shape optimisation. The latter relies on the discrete adjoint method to efficiently evaluate the gradient of the objective function with respect to an arbitrary number of design variables. It is shown that the method, applied here for the first time to a transonic flow of a refrigerant in an ejector, is capable of generating a well performing ejector shape from a failed design, despite the apparent discontinuity of the objective function at the critical point. The predicted efficiencies with the optimised shapes exceed those of the best ejectors on the market by around 15%
Marcelet, Meryem. "Etude et mise en oeuvre d'une méthode d'optimisation de forme couplant simulation numérique en aérodynamique et en calcul de structure". Phd thesis, Paris, ENSAM, 2008. http://tel.archives-ouvertes.fr/tel-00367508.
Texto completoMarcelet, Meryem. "Etude et mise en oeuvre d'une méthode d'optimisation de forme couplant simulation numérique en aérodynamique et en calcul de structure". Phd thesis, Paris, ENSAM, 2008. http://www.theses.fr/2008ENAM0039.
Texto completoThis work is mainly dedicated to the sensitivity analysis of a static aeroelastic system with respect to design parameters governing its jig-shape. First, a framework able to predict the static aeroelastic equilibrium has been set up. The fluid behavior can be governed either by the nonlinear Euler equations or by the Navier-Stokes Reynolds averaged (RANS) equations. They are numerically solved by an ONERA CFD solver: elsA. The structural behavior is governed by the Euler-Bernoulli equations within the context of beam theory. The aerodynamic loads are transferred to the structure using the matrix of the influence coefficients, also called the flexibility matrix. Only the bending and the twisting aerodynamic load components are consistently transmitted to the structure, and only the bending and the torsional displacements of the structure are calculated under the small displacement hypothesis. The deformation induced on the fluid domain mesh is analytically prescribed using an analogy to solid mechanics. Finally, the resulting coupled aeroelastic system of equations is solved by an iterative process inspired from the fixed-point algorithm. Second, a framework aiming at computing the gradients of the functions of interest (objective and constraints) with respect to a vector of shape parameters related to the jig-shape of the aeroelastic system previously depicted, has been raised. These gradients can be computed either by the discrete direct differentiation method or by the discrete adjoint vector method. In both cases, a coupled linear system of equations has to be solved, which is carried out using a doubly lagged iterative process. Finally, this framework has been applied to the computation of the gradients of the drag and lift aerodynamic coefficients with respect to different shape parameters for three aerodynamic configurations of growing complexity: Euler equations solved on a multiblock mesh with matching boundaries, RANS equations on a monoblock mesh, and, at last, RANS equations solved on a multiblock mesh with non-matching boundaries. The analytical gradients have been validated through the comparison with the finite difference gradients. A last part of this work has been dedicated to the evaluation of the performances of four surrogate models within the shape optimization of a bidimensional turbomachinery configuration
Mura, Gabriele Luigi. "Mesh sensitivity investigation in the discrete adjoint framework". Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17384/.
Texto completoRothauge, Kai. "The discrete adjoint method for high-order time-stepping methods". Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/60285.
Texto completoScience, Faculty of
Mathematics, Department of
Graduate
Schneider, Rene. "Applications of the discrete adjoint method in computational fluid dynamics". Thesis, University of Leeds, 2006. http://etheses.whiterose.ac.uk/1343/.
Texto completoWalther, Andrea. "Discrete Adjoints: Theoretical Analysis, Efficient Computation, and Applications". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1214221752009-12115.
Texto completoWalther, Andrea. "Discrete Adjoints: Theoretical Analysis, Efficient Computation, and Applications". Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23715.
Texto completoRoth, Rolf [Verfasser]. "Multilevel Optimization of Turbulent Flows by Discrete Adjoint Techniques / Rolf Roth". München : Verlag Dr. Hut, 2012. http://d-nb.info/1025821424/34.
Texto completoTowara, Markus [Verfasser], Uwe [Akademischer Betreuer] Naumann y Wolfgang [Akademischer Betreuer] Schröder. "Discrete adjoint optimization with OpenFOAM / Markus Towara ; Uwe Naumann, Wolfgang Schröder". Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1187346942/34.
Texto completoLibros sobre el tema "Adjoint discret"
Edmunds, D. E. y W. D. Evans. Capacity and Compactness Criteria. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0008.
Texto completoCapítulos de libros sobre el tema "Adjoint discret"
Wong, M. W. "Self-Adjoint Operators". En Discrete Fourier Analysis, 113–16. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0116-4_16.
Texto completoLotz, Johannes, Uwe Naumann, Max Sagebaum y Michel Schanen. "Discrete Adjoints of PETSc through dco/c++ and Adjoint MPI". En Euro-Par 2013 Parallel Processing, 497–507. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40047-6_51.
Texto completoGiles, M. B. "Discrete Adjoint Approximations with Shocks". En Hyperbolic Problems: Theory, Numerics, Applications, 185–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55711-8_16.
Texto completoCatlin, Donald E. "Adjoints, Projections, Pseudoinverses". En Estimation, Control, and the Discrete Kalman Filter, 92–113. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-4528-5_4.
Texto completoSchmüdgen, Konrad. "Discrete Spectra of Self-adjoint Operators". En Graduate Texts in Mathematics, 265–80. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4753-1_12.
Texto completoFichtner, Andreas. "The Frequency-Domain Discrete Adjoint Method". En Full Seismic Waveform Modelling and Inversion, 189–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_10.
Texto completoShu, Hanlin, Liangzhi Cao, Qingming He, Tao Dai, Zhangpeng Huang y Hongchun Wu. "Study on Unstructured-Mesh-Based Importance Sampling Method of Monte Carlo Simulation". En Springer Proceedings in Physics, 431–44. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_38.
Texto completoAnil, N., N. K. S. Rajan, Omesh Reshi y S. M. Deshpande. "A Low Dissipative Discrete Adjoint m-KFVS Method". En Computational Fluid Dynamics 2008, 619–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_82.
Texto completoTowara, Markus, Johannes Lotz y Uwe Naumann. "Discrete Adjoint Approaches for CHT Applications in OpenFOAM". En Computational Methods in Applied Sciences, 163–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57422-2_11.
Texto completoBrezillon, Joël y Mohammad Abu-Zurayk. "Aerodynamic Inverse Design Framework Using Discrete Adjoint Method". En Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 489–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35680-3_58.
Texto completoActas de conferencias sobre el tema "Adjoint discret"
Biava, Massimo, Mark Woodgate y George N. Barakos. "Fully Implicit Discrete Adjoint Methods". En 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1491.
Texto completoFrey, Christian, Hans-Peter Kersken y Dirk Nu¨rnberger. "The Discrete Adjoint of a Turbomachinery RANS Solver". En ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59062.
Texto completoSchäfer, Fellcitas, Luca Magri y Wolfgang Polifke. "A Hybrid Adjoint Network Model for Thermoacoustic Optimization". En ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59866.
Texto completoMartins, Joaquim R. R. A., Charles Mader y Juan Alonso. "ADjoint: An Approach for Rapid Development of Discrete Adjoint Solvers". En 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-7121.
Texto completoZhang, Chaolei y Zhenping Feng. "Aerodynamic Shape Design Optimization for Turbomachinery Cascade Based on Discrete Adjoint Method". En ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45805.
Texto completoMa, Can, Xinrong Su y Xin Yuan. "Discrete Adjoint Solution of Unsteady Turbulent Flow in Compressor". En ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42948.
Texto completoWalther, Benjamin y Siva Nadarajah. "An Adjoint-Based Optimization Method for Constrained Aerodynamic Shape Design of Three-Dimensional Blades in Multi-Row Turbomachinery Configurations". En ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26604.
Texto completoWu, Hangkong, Shenren Xu, Xiuquan Huang y Dingxi Wang. "The Development and Verification of a Fully Turbulent Discrete Adjoint Solver Using Algorithmic Differentiation". En ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59610.
Texto completoLu, Juan, Chaolei Zhang y Zhenping Feng. "Aerodynamic Optimization and Inverse Design of 2D and 3D Turbine Cascades Using the Discrete Adjoint Method". En ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95284.
Texto completoChung, June, Jeonghwan Shim y Ki D. Lee. "Inverse Design of 3D Compressor Blades With Adjoint Method". En ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45419.
Texto completoInformes sobre el tema "Adjoint discret"
Slater, C. O. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations. Office of Scientific and Technical Information (OSTI), enero de 1992. http://dx.doi.org/10.2172/5973682.
Texto completoSlater, C. O. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations. Office of Scientific and Technical Information (OSTI), enero de 1992. http://dx.doi.org/10.2172/10110196.
Texto completo