Índice

  1. Tesis

Literatura académica sobre el tema "Adipose-derived stem cells, regenerative medicine"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Adipose-derived stem cells, regenerative medicine".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Tesis sobre el tema "Adipose-derived stem cells, regenerative medicine"

1

Srivastava, Sapna. "The potential of human adipose derived stem cells for myocardial regenerative therapy." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95088.

Texto completo
Resumen
Background: Cell therapy using Human Bone Marrow Stem Cells (HBMSCs) has been shown to improve heart function after a myocardial infarction. The harvesting technique involved with bone marrow stem cells is invasive and yields a low cell number. There is now an increasing interest in Human Adipose Derived Stem Cells (HADSCs) as they are abundant and readily accessible from liposuction material. The present study was undertaken to investigate if HADSCs are superior than HBMSCs in myocardial regenerative therapy. Results: Both HADSCs and HBMSCs proliferated in a time dependent manner, however, t
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Francis, Michael. "RECAPITULATING OSTEOBLASTOGENESIS WITH ELECTROSPUN FIBRINOGEN NANOFIBERS AND ADIPOSE STEM CELLS AND ELECTROSPINNING ADIPOSE TISSUE-DERIVED BASEMENT MEMBRANE." VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2025.

Texto completo
Resumen
To repair, replace, or regenerate damaged or diseased tissue has been a long-standing, albeit elusive, goal in medical research. Here, we characterize patient-derivable mesenchymal stem cell types, termed adipose-derived stem cells (ASCs). These cells, which can be derived from liposuction fat and lipoaspirate saline, are sources for patient-derivable extracellular matrix (ECM), fibrinogen (Fg) and adipose tissue extracellular matrix, and may prove useful for synthesizing new bone tissue analogues in vitro. Traditionally and rapidly isolated ASCs were thoroughly characterized as multipotent,
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sutha, Ken. "Osteoinductive material derived from differentiating embryonic stem cells." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51722.

Texto completo
Resumen
The loss of regenerative capacity of bone, from fetal to adult to aged animals, has been attributed not only to a decline in the function of cells involved in bone formation but also to alterations in the bone microenvironment that occur through development and aging, including extracellular matrix (ECM) composition and growth/trophic factor content. In the development of novel treatments for bone repair, one potential therapeutic goal is the restoration of a more regenerative microenvironment, as found during embryonic development. One approach to creating such a microenvironment is through t
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lazin, Jamie Jonas. "The effect of age and sex on the number and osteogenic differentiation potential of adipose-derived mesenchymal stem cells." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34696.

Texto completo
Resumen
It has been shown that stem cells exist within adult adipose tissue. These stem cells are named adipose-derived mesenchymal stem cells (ASCs), are derived from the mesoderm, and can differentiate into a number of cells including osteoblasts, chondrocytes, and adipocytes. However, before these cells can be used clinically it is important that we understand how factors like age, sex, and ethnicity affect ASC number and potential. Additionally, since men and women vary in their distribution of adipose tissue, it will be important to see if the ideal source of ASCs is different for each sex. The
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nair, Rekha. "Acellular matrices derived from differentiating embryonic stem cells." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37170.

Texto completo
Resumen
Embryonic stem cells (ESCs) can differentiate into all somatic cells, and as such, are a promising cell source for therapeutic applications. In vitro, ESCs spontaneously differentiate via the aggregation of cells into embryoid bodies (EBs), which recapitulate aspects of early embryogenesis and harbor a unique reservoir of cues critical for tissue formation and morphogenesis. Embryonic healing responses employ similar intrinsic machinery used for tissue development, and these morphogenic cues may be captured within the EB microenvironment. Recent studies have shown that when injected into in
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Yasin, Mohammed. "Non-regenerative benefits of adult bone marrow derived stem cells for myocardial protection." Thesis, Queen Mary, University of London, 2013. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8701.

Texto completo
Resumen
Ischaemic heart disease is the most common cause of mortality in the western hemisphere and it is rapidly becoming the leading cause of death globally. Moreover, therapeutic interventions by cardiologists and cardiac surgeons frequently subject the heart to acute I/R injury, which in itself can cause mortality. Recent investigations of adult stem cells have primarily focused on their regenerative potential for chronic ischaemic heart disease. In this thesis, I have investigated the hypothesis that adult bone marrow derived stem cells are cardioprotective in acute regional myocardial I/R injury
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Arrigoni, E. "ADIPOSE-DERIVED STEM CELLS (ASCS) FOR FUTURE CELLULAR THERAPIES IN MUSCLE-SKELETAL TISSUES REGENERATION." Doctoral thesis, Università degli Studi di Milano, 2012. http://hdl.handle.net/2434/170261.

Texto completo
Resumen
Every year several patients have to deal with bone tissue loss due to trauma or diseases. Bone tissue engineering aims to restore or repair musculoskeletal disorders through the development of bio-substitutes that require the use of cells and scaffolds which should possess both adequate mechanical properties and interconnecting pores to allow cellular infiltration, graft integration and vascularization. The ideal cell for tissue engineering should possess a potential plasticity with the ability to functionally repair the damaged tissue, and it should be available in large amount. Mesenchymal s
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

GRILLI, FEDERICA. "Controlling the Adipose-derived Stem cell 3D-organization on micrometric PLGA regular scaffolds for cardiac tissue regeneration and repair." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1091894.

Texto completo
Resumen
The deposition of cells at sites of injury is a clinically relevant approach to facilitate local tissue regeneration and repair. However, cell engraftment, retention, and survival are generally modest, requiring the development of novel deposition techniques and biomaterials. Here, a micro-sized polymeric network (microMESH) is investigated as a promising biodegradable scaffold for the engraftment and tissue integration of human Adipose-Derived Stem Cells (hADSCs) to be used for a wide range of injuries, including myocardial infarction. microMESH comprises a regular network of PLGA microfilame
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Caremoli, F. "PURIFICATION, CHARACTERIZATION AND CULTURE OF ENSHEATHING CELLS FROM HUMAN OLFACTORY MUCOSA BIOPSIES." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/335140.

Texto completo
Resumen
Among all the possible sources of mesenchymal stem cells, adipose tissue and olfactory mucosa have raised great interest and have become some of the most investigated sources. Adipose tissue-derived mesenchymal stem cells and the fat itself as a source of human adipose derived stem cells, represent one of the major fields of research in regenerative medicine. A great advantage is represented by the minimal invasive and high accessibility to adipose tissue and its ready availability. In the present study, hADSCs were isolated from the adipose tissue donated by several patient and have been in
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sunohara, Tadashi. "MicroRNA-based separation of cortico-fugal projection neuron-like cells derived from embryonic stem cells." Kyoto University, 2020. http://hdl.handle.net/2433/253176.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!