Literatura académica sobre el tema "Adipose-derived mesenchymal stem cell"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Adipose-derived mesenchymal stem cell".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Adipose-derived mesenchymal stem cell"
Zahran F, Zahran F., El-Deen IM El-Deen IM, Hamed S. Hamed S y EL-Shenawy A. EL-Shenawy A. "Characterization of Adipogenic Differentiation of Mesenchymal Stem Cell Derived from Mice Adipose Tissue". Indian Journal of Applied Research 3, n.º 7 (1 de octubre de 2011): 18–22. http://dx.doi.org/10.15373/2249555x/july2013/7.
Texto completoKawata, Yumiko, Eiji Ikami, Junya Nojima, Shoichiro Kokabu, Tetsuya Yoda y Tsuyoshi Sato. "Effect of Adipose Tissue-Derived Mesenchymal Stem Cells on Irradiated Bone Marrow-Derived Mesenchymal Stem Cells". Journal of Bone Biology and Osteoporosis 4, n.º 1 (15 de noviembre de 2018): 94–98. http://dx.doi.org/10.18314/jbo.v4i1.1230.
Texto completoAn, JH, KB Kim, SC Kwon, HJ Kim, MO Ryu, YI Oh, JO Ahn y HY Youn. "Canine adipose tissue-derived mesenchymal stem cell therapy in a dog with renal Fanconi syndrome". Veterinární Medicína 67, No. 4 (16 de febrero de 2022): 206–11. http://dx.doi.org/10.17221/213/2020-vetmed.
Texto completoGerth, David J. y Seth R. Thaller. "Adipose-Derived Mesenchymal Stem Cells". Journal of Craniofacial Surgery 30, n.º 3 (mayo de 2019): 636–38. http://dx.doi.org/10.1097/scs.0000000000005336.
Texto completoBunnell, Bruce A. "Adipose Tissue-Derived Mesenchymal Stem Cells". Cells 10, n.º 12 (6 de diciembre de 2021): 3433. http://dx.doi.org/10.3390/cells10123433.
Texto completoFranco, GG, BW Minto, LP Coelho, PF Malard, ER Carvalho, FYK Kawamoto, BM Alcantara y LGGG Dias. "Autologous adipose-derived mesenchymal stem cells and hydroxyapatite for bone defect in rabbits". Veterinární Medicína 67, No. 1 (29 de noviembre de 2021): 38–45. http://dx.doi.org/10.17221/85/2020-vetmed.
Texto completoAlió del Barrio, Jorge L., Ana De la Mata, María P. De Miguel, Francisco Arnalich-Montiel, Teresa Nieto-Miguel, Mona El Zarif, Marta Cadenas-Martín et al. "Corneal Regeneration Using Adipose-Derived Mesenchymal Stem Cells". Cells 11, n.º 16 (16 de agosto de 2022): 2549. http://dx.doi.org/10.3390/cells11162549.
Texto completoKo, M., TH Kim, Y. Kim, D. Kim, JO Ahn, BJ Kang, S. Choi, I. Park, JH Choi y JY Chung. "Improvement of systemic lupus erythematosus in dogs with canine adipose-derived stem cells". Veterinární Medicína 64, No. 10 (26 de octubre de 2019): 462–66. http://dx.doi.org/10.17221/46/2019-vetmed.
Texto completoLee, Rebecca, Nicoletta Del Papa, Martin Introna, Charles F. Reese, Marina Zemskova, Michael Bonner, Gustavo Carmen-Lopez, Kristi Helke, Stanley Hoffman y Elena Tourkina. "Adipose-derived mesenchymal stromal/stem cells in systemic sclerosis: Alterations in function and beneficial effect on lung fibrosis are regulated by caveolin-1". Journal of Scleroderma and Related Disorders 4, n.º 2 (25 de enero de 2019): 127–36. http://dx.doi.org/10.1177/2397198318821510.
Texto completoHodgkinson, Tom, Francis Wignall, Judith A. Hoyland y Stephen M. Richardson. "High BMPR2 expression leads to enhanced SMAD1/5/8 signalling and GDF6 responsiveness in human adipose-derived stem cells: implications for stem cell therapies for intervertebral disc degeneration". Journal of Tissue Engineering 11 (enero de 2020): 204173142091933. http://dx.doi.org/10.1177/2041731420919334.
Texto completoTesis sobre el tema "Adipose-derived mesenchymal stem cell"
ANGHILERI, Elena. "Adipose-derived mesenchymal stem cells: neuronal differentiation potential and neuroprotective action". Doctoral thesis, Università degli Studi di Verona, 2010. http://hdl.handle.net/11562/343866.
Texto completoAdult mesenchymal stem cells derived from adipose tissue (ASC) offer significant practical advantages over other types of stem cells (SC) for potential clinical applications, since they can be obtained from adult adipose tissue in large amounts, can be easily cultured and expanded with a very low risk for development of malignancies. We investigated in vitro the neuronal differentiation potential of human ASC with a chemical protocol and a prolonged two-step protocol, which included sphere formation and sequential culture in brain-derived neurotrophic factor (BDNF) and retinoic acid (RA). After 30 days, about 57% ASC show morphological, immunocytochemical and electrophysiological evidence of initial neuronal differentiation. In fact, ASC display elongated shape with protrusion of two or three cellular processes, selectively express nestin and neuronal molecules (including GABA-A receptor and tyroxine hydroxilase) in the absence of glial phenotypic markers. Differentiated cells show negative membrane potential (−60 mV), delayed rectifier potassium currents and TTX-sensitive sodium currents, but they are unable to generate action potential. Considering the low efficacy and the not-fully mature neuronal differentiation, we evaluated if ASC display a neuroprotective effect. Using the H2O2-stressed neuroblastoma model in vitro, we show that ASC increase cell availability (compared to fibroblasts) and protect against apoptosis. A possible mechanism involved could be the secretion of BDNF, as reported for human BM-MSC: in this regard, we indeed find high levels of BDNF in ASCcondition medium. In addition to exert neuroprotection, soluble factors secreted by ASC promote neurite outgrowth, an additional mechanism that may favor neuroregeneration. In view of these results and their immunosuppressive action (Constantin et al, 2009), ASC may be a ready source of adult MSC to treat neurodegenerative diseases.
Brown, Alice Clare. "Generating hair follicle inductive dermal papillae cells from adipose derived mesenchymal stem cells". Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29596.
Texto completoBanani, M. A., M. Rahmatullah, N. Farhan, Zoe Hancox, Safiyya Yousaf, Z. Arabpour, Moghaddam Z. Salehi, M. Mozafari y Farshid Sefat. "Adipose tissue-derived mesenchymal stem cells for breast tissue regeneration". Future Medicine, 2021. http://hdl.handle.net/10454/18391.
Texto completoWith an escalating incidence of breast cancer cases all over the world and the deleterious psychological impact that mastectomy has on patients along with several limitations of the currently applied modalities, it's plausible to seek unconventional approaches to encounter such a burgeoning issue. Breast tissue engineering may allow that chance via providing more personalized solutions which are able to regenerate, mimicking natural tissues also facing the witnessed limitations. This review is dedicated to explore the utilization of adipose tissue-derived mesenchymal stem cells for breast tissue regeneration among postmastectomy cases focusing on biomaterials and cellular aspects in terms of harvesting, isolation, differentiation and new tissue formation as well as scaffolds types, properties, material–host interaction and an in vitro breast tissue modeling.
Edbom, Katarina. "Characterization of adipose derived mesenchymal stem cells received via automated extraction". Thesis, Örebro universitet, Institutionen för medicinska vetenskaper, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-48506.
Texto completoMacKay, Maria-Danielle L. "Characterization of Medullary and Human Mesenchymal Stem Cell-Derived Adipocytes". Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1232775772.
Texto completoPrasad, Ankur. "The role of aortic carboxypeptidase-like protein in adipose-derived mesenchymal stem cell adipogenesis and fibrosis". Thesis, Boston University, 2013. https://hdl.handle.net/2144/12193.
Texto completoThe prevalence of obesity and obesity related diseases are increasing worldwide. Obesity is characterized by the pathological expansion of white adipose tissue. Previous studies on white adipose tissue of obese individuals have detected inflammation and fibrosis. These conditions may cause dysregulation of the tissue, leading to negative outcomes, including type II diabetes and metabolic syndrome. Aortic carboxypeptidase-like protein (ACLP) is a secreted extracellular matrix protein that is upregulated in fibrotic lung tissue. Importantly ACLP knockout mice are protected from experimentally induced lung fibrosis. ACLP is expressed in adipose tissue and is downregulated as stem cells undergo adipogenesis. Its overexpression increases α smooth muscle actin expression and impairs adipogenesis in preadipocyte lines; however, its role in white adipose tissue fibrosis has not been fully explored. The studies presented in this thesis aimed to investigate the hypothesis that ACLP overexpression in fibrotic white adipose tissue would promote a fibroblast to myofibroblast transition and repress adipogenesis. To determine if ACLP promotes a fibroblast to myofibroblast transition, we tested the capacity of ACLP to induce α smooth muscle actin and collagen I protein expression and increase contractility of primary stromal vascular cells. To assess the effects of ACLP on adipogenesis, we tested the ability of 10T1/2 fibroblasts and stromal vascular cells to undergo adipogenesis in collagen I gels under ACLP treatment. Results presented herein demonstrate ACLP is a potent inhibitor of adipogenesis and induces an upward trend in myofibroblast proteins and RNA expression. Significantly, these studies used murine adipose-derived cells to show the effects of ACLP, suggesting these results might be reflected in adipose tissue. These experiments support a model where ACLP potentiates adipose tissue fibrosis by inhibiting adipogenesis, resulting in fewer developing adipocytes, and stimulating myofibroblast differentiation, resulting in further collagen deposition and tissue compaction. This contribution to adipose tissue dysfunction also gives ACLP a possible role in the development of obesity related diseases, including diabetes and metabolic syndrome, identifying it as a possible target for therapeutics.
PITRONE, Maria. "ISOLATION AND CHARACTERIZATION OF VISCERAL- AND SUBCUTANEOUS ADIPOSE-DERIVED MESENCHYMAL STEM CELLS: PUTATIVE ROLE IN OBESITY AND METABOLIC SYNDROME". Doctoral thesis, Università degli Studi di Palermo, 2014. http://hdl.handle.net/10447/91235.
Texto completoWong, Andrew P. "REGENERATIVE POTENTIAL OF MESENCHYMAL STEM CELL DERIVED EXOSOMES". VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5856.
Texto completoLin, Wenyu. "Investigating the immunomodulatory properties of human embryonic stem cell-derived mesenchymal stem cells". Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/7060.
Texto completoAL, HAJ GHINA. "EFFECTS OF LIPID MIXTURE AND A SELECTIVE PPARG MODULATOR ON THE DIFFERENTIATION CAPABILITIES OF HUMAN DERIVED MESENCHYMAL STEM CELLS(HADSCS) DERIVED FROM HEALTHY AN D BREAST CANCER PATIENTS". Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/784157.
Texto completoMetabolic syndrome is associated with many complications especially leading to life threatening disorders such as obesity and cancer. To be able to identify solutions and natural treatments, we need to investigate the underlying causes of this syndrome. Nutrition is one important factor to consider in the prevention and treatment of the metabolic syndrome. Nutrition effects almost all metabolism mechanisms in the human body. One provident effect of nutrition is adiposity. Over the recent years, an interest was noted to studying adipogenesis in relation to obesity. Different factors affect adipogenesis including natural dietary compounds to help decrease adiposity, therefore the risk of developing obesity and later on obesity related diseases such as breast cancer. To be able to study this correlation in-vitro, a wide choice of cell models can be used. Human adipose derived mesenchymal cells (hADSCs) are one of the top choices used to study adipogenesis overcoming the limitations that other cell models have in their applicability to humans regarding the prevailing difference in their metabolism and physiology. In this study, the aim was to study adipogenesis using hADSCs in presence of dietary compounds such as lipids and GMG-43AC, a natural selective peroxisome proliferator-activated receptor g (PPAR g) modulator, that seems to have a positive effect on inhibiting adipogenesis in murine 3T3-L1 cells. We wanted to investigate further on its application on human cell models and try to understand its mechanism in inhibiting this phenomenon. The protocols were set up using the THP-1 cell line, which we noticed upon using a Lipid mixture cocktail (Composition: Non-animal fatty acids; 2 μg/ml arachidonic; 10 μg/ml linoleic acid; 10 μg/ml linolenic acid: 10 μg/ml myristic acid; 10 μg/ml oleic acid; 10 μg/ml palmitic acid; 10 μg/ml stearic acid; 0.22 mg/ml cholesterol from New Zealand sheep′s wool; 2.2 mg/ml Tween-80; 70 μg/ml tocopherol acetate), a decrease in pro-inflammatory cytokines IL-6 and IL-1b. We also noticed a doseIV dependent increase of FABP-4. Our findings regarding hADSCs, that PPARγ expression and lipid accumulation was restored upon the presence of lipid mixture in breast cancer hADSCs that were derived from breast tissue. Secondly, GMG-43AC in both concentrations (0.5mM and 2mM) inhibited lipid accumulation and showed a significant decrease in the expression of adipocyte-specific genes, such as PPARγ and FABP-4 even after the full differentiation of hADSCs that were derived from lipoaspirates. This suggests that dietary compounds are important factors in adipose differentiation and diet has a big influence in the progression and prevention in many metabolic diseases, such as obesity and cancer.
Libros sobre el tema "Adipose-derived mesenchymal stem cell"
Adipose-derived stem cells: Methods and protocols. New York, NY: Humana Press, 2011.
Buscar texto completoMesenchymal Stem Cell Derived Exosomes. Elsevier, 2015. http://dx.doi.org/10.1016/c2013-0-15342-1.
Texto completoTang, Yaoliang y Buddhadeb Dawn. Mesenchymal Stem Cell Derived Exosomes: The Potential for Translational Nanomedicine. Elsevier Science & Technology Books, 2015.
Buscar texto completoTang, Yaoliang y Buddhadeb Dawn. Mesenchymal Stem Cell Derived Exosomes: The Potential for Translational Nanomedicine. Elsevier Science & Technology Books, 2015.
Buscar texto completoAl-Anazi, KA, WK Al-Anazi y AM Al-Jasser. Update on COVID-19 Infections and the Promising Role of Mesenchymal Stem Cell Therapies in their Management. Heighten Science Publications Inc., 2020. http://dx.doi.org/10.29328/ebook1002.
Texto completoBahadori, Mohammad Hadi. Cryopreservation of Rat Bone Marrow Derived Mesenchymal Stem Cells by Two Conventional and Open-Pulled Straw Vitrification Methods. INTECH Open Access Publisher, 2012.
Buscar texto completoLiu, Hong Bin. Bone Marrow Derived Mesenchymal Stem Cells Are Recruited into Injured Pancreas and Contribute to Amelioration of the Chronic Pancreatitis in Rats. INTECH Open Access Publisher, 2012.
Buscar texto completoCapítulos de libros sobre el tema "Adipose-derived mesenchymal stem cell"
Fraser, John K., Min Zhu, Isabella Wulur y Zeni Alfonso. "Adipose-Derived Stem Cells". En Mesenchymal Stem Cells, 59–67. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-169-1_4.
Texto completoWeiss, Jeffrey N. "Adipose-Derived Mesenchymal Stem Cells in Osteoarthritis". En Orthopedic Stem Cell Surgery, 41–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73299-8_10.
Texto completoWeiss, Jeffrey N. "Adipose-derived Mesenchymal Stem Cells in Osteoarthritis". En Orthopedic Stem Cell Surgery, 107–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73299-8_19.
Texto completoVidal, Martin A. y Mandi J. Lopez. "Adipogenic Differentiation of Adult Equine Mesenchymal Stromal Cells". En Adipose-Derived Stem Cells, 61–75. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-61737-960-4_6.
Texto completoAssoni, Amanda Faria, Giuliana Castello Coatti, Juliana Plat Aguiar Gomes, Mayra Vitor Pelatti y Mayana Zatz. "Adipose-Derived Mesenchymal Stromal Cells". En Working with Stem Cells, 37–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30582-0_3.
Texto completoKroeze, Robert Jan, Marlene Knippenberg y Marco N. Helder. "Osteogenic Differentiation Strategies for Adipose-Derived Mesenchymal Stem Cells". En Adipose-Derived Stem Cells, 233–48. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-61737-960-4_17.
Texto completoKim, Yeon Jeong y Jin Sup Jung. "Methods for Analyzing MicroRNA Expression and Function During Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells". En Adipose-Derived Stem Cells, 401–18. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-61737-960-4_29.
Texto completoZachar, Vladimir, Jeppe Grøndahl Rasmussen y Trine Fink. "Isolation and Growth of Adipose Tissue-Derived Stem Cells". En Mesenchymal Stem Cell Assays and Applications, 37–49. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-999-4_4.
Texto completoDubois, Severine G., Elizabeth Z. Floyd, Sanjin Zvonic, Gail Kilroy, Xiying Wu, Stacy Carling, Yuan Di C. Halvorsen, Eric Ravussin y Jeffrey M. Gimble. "Isolation of Human Adipose-derived Stem Cells from Biopsies and Liposuction Specimens". En Mesenchymal Stem Cells, 69–79. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-169-1_5.
Texto completoWeiss, Jeffrey N. "Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells (GXCPC1) for Knee Osteoarthritis". En Orthopedic Stem Cell Surgery, 155–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73299-8_28.
Texto completoActas de conferencias sobre el tema "Adipose-derived mesenchymal stem cell"
Katsube, Yoshihiro, Ousuke Hayashi, Motohiro Hirose y Hajime Ohgushi. "Adipose Tissue-derived Mesenchymal Stem Cells have Lower Osteogenic Potential than Bone Marrow-derived Mesenchymal Stem Cells". En In Commemoration of the 1st Asian Biomaterials Congress. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835758_0005.
Texto completoGuo, Bao-Feng, Ling Zhang, Wei-Tian Yin, Kun Ji y Zhuang Wei. "Multipotential Capacity of Human Adipose-Derived Mesenchymal Stem Cells". En 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5517449.
Texto completoLevy, Debora, Suelen Silva, Thatiana Melo, Jorge Ruiz, Cesar Isaac, Maíra Fidelis, Alessandro Rodrigues y Sergio Bydlowski. "Abstract A71: Effect of oxysterols in adipose tissue-derived mesenchymal stem cell". En Abstracts: AACR International Conference held in cooperation with the Latin American Cooperative Oncology Group (LACOG) on Translational Cancer Medicine; May 4-6, 2017; São Paulo, Brazil. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.tcm17-a71.
Texto completoRitter, A., A. Friemel, NN Kreis, SC Hoock, S. Roth, U. Kielland-Kaisen, D. Brüggmann, C. Solbach, F. Louwen y J. Yuan. "Primary cilia are dysfunctional in obese adipose-derived mesenchymal stem cells". En 62. Kongress der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe – DGGG'18. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1671441.
Texto completoErdost, Hatice. "‘Comparison of Subcutan and Inguinal Adipose Tissue Derived Mesenchymal Stem Cells’". En 15th International Congress of Histochemistry and Cytochemistry. Istanbul: LookUs Scientific, 2017. http://dx.doi.org/10.5505/2017ichc.pp-53.
Texto completoSharaf, K., A. Kleinsasser, O. Gires, M. Canis, S. Schwenk-Zieger y F. Haubner. "Molecular characterization of lipoaspirate-derived adipose mesenchymal stem cells in wound healing". En Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686895.
Texto completoKuca-Warnawin, E., U. Skalska, M. Plebanczyk, I. Janicka, U. Musialowicz, K. Bonek, P. Głuszko y E. Kontny. "P116 Basic characteristics of adipose-derived mesenchymal stem cells of ankylosing spondylitis patients". En 39th European Workshop for Rheumatology Research, 28 February–2 March 2019, Lyon, France. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2018-ewrr2019.104.
Texto completoSkalska, Urszula, Ewa Kuca-Warnawin, Tomasz Burakowski, Anna Kornatka, Iwona Janicka, Urszula Musiałowicz y Ewa Kontny. "03.14 Comparison of immunosuppressive potential of rheumatoid adipose mesenchymal stem cells derived from articular and subcutaneous adipose tissues". En 37th European Workshop for Rheumatology Research 2–4 March 2017 Athens, Greece. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2016-211049.14.
Texto completoKuca-Warnawin, E., U. Skalska, I. Janicka, K. Bonek, P. Głuszko, W. Maslinski y E. Kontny. "P115/O19 Immunomodulatory activity of adipose-derived mesenchymal stem cells of ankylosing spondylitis patients". En 39th European Workshop for Rheumatology Research, 28 February–2 March 2019, Lyon, France. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2018-ewrr2019.103.
Texto completoAlihemmati, Zakieh, Bahman Vahidi y Nooshin Haghighipour. "Mechanical modulation study of an adipose-derived mesenchymal stem cell under pressure loading: A numerical investigation on cell engineering". En 2014 21th Iranian Conference on Biomedical Engineering (ICBME). IEEE, 2014. http://dx.doi.org/10.1109/icbme.2014.7043893.
Texto completoInformes sobre el tema "Adipose-derived mesenchymal stem cell"
Donohue, Henry J., Christopher Niyibizi y Alayna Loiselle. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2013. http://dx.doi.org/10.21236/ada606237.
Texto completoDonahue, Henry J. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss. Fort Belvoir, VA: Defense Technical Information Center, julio de 2012. http://dx.doi.org/10.21236/ada581680.
Texto completoBrennen, William N. Bone Marrow-derived Mesenchymal Stem Cells (MSCs) as a Selective Delivery Vehicle for a PSA-Activated Protoxin for Advanced Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2013. http://dx.doi.org/10.21236/ada580995.
Texto completoBrennen, William. Bone Marrow-derived Mesenchymal Stem Cells (MSCs) as a Selective Delivery Vehicle for a PSA-Activated Protoxin for Advanced Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, abril de 2014. http://dx.doi.org/10.21236/ada602710.
Texto completo