Literatura académica sobre el tema "Active particle"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Active particle".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Active particle"
Arkar, Kyaw, Mikhail M. Vasiliev, Oleg F. Petrov, Evgenii A. Kononov y Fedor M. Trukhachev. "Dynamics of Active Brownian Particles in Plasma". Molecules 26, n.º 3 (21 de enero de 2021): 561. http://dx.doi.org/10.3390/molecules26030561.
Texto completoDatt, Charu, Giovanniantonio Natale, Savvas G. Hatzikiriakos y Gwynn J. Elfring. "An active particle in a complex fluid". Journal of Fluid Mechanics 823 (23 de junio de 2017): 675–88. http://dx.doi.org/10.1017/jfm.2017.353.
Texto completoSpeck, Thomas. "Collective forces in scalar active matter". Soft Matter 16, n.º 11 (2020): 2652–63. http://dx.doi.org/10.1039/d0sm00176g.
Texto completoMoran, Shannon E., Isaac R. Bruss, Philipp W. A. Schönhöfer y Sharon C. Glotzer. "Particle anisotropy tunes emergent behavior in active colloidal systems". Soft Matter 18, n.º 5 (2022): 1044–53. http://dx.doi.org/10.1039/d0sm00913j.
Texto completoNourhani, Amir, Daniel Brown, Nicholas Pletzer y John G. Gibbs. "Engineering Contactless Particle-Particle Interactions in Active Microswimmers". Advanced Materials 29, n.º 47 (2 de noviembre de 2017): 1703910. http://dx.doi.org/10.1002/adma.201703910.
Texto completoCho, Durkhyun, Sanghoon Lee y Il Hong Suh. "Facial Feature Tracking Using Adaptive Particle Filter and Active Appearance Model". Journal of Korea Robotics Society 8, n.º 2 (31 de mayo de 2013): 104–15. http://dx.doi.org/10.7746/jkros.2013.8.2.104.
Texto completoGulin-Sarfraz, Tina, Jawad Sarfraz, Didem Şen Karaman Didem Şen Karaman, Jixi Zhang, Christina Oetken-Lindholm, Alain Duchanoy, Jessica M. Rosenholm y Daniel Abankwa. "FRET-reporter nanoparticles to monitor redox-induced intracellular delivery of active compounds". RSC Adv. 4, n.º 32 (2014): 16429–37. http://dx.doi.org/10.1039/c4ra00270a.
Texto completoSteimel, Joshua P., Juan L. Aragones, Helen Hu, Naser Qureshi y Alfredo Alexander-Katz. "Emergent ultra–long-range interactions between active particles in hybrid active–inactive systems". Proceedings of the National Academy of Sciences 113, n.º 17 (11 de abril de 2016): 4652–57. http://dx.doi.org/10.1073/pnas.1520481113.
Texto completoZhang, Ying-Nan, Qing-Ni Hu y Hong-Fei Teng. "Active target particle swarm optimization". Concurrency and Computation: Practice and Experience 20, n.º 1 (2007): 29–40. http://dx.doi.org/10.1002/cpe.1207.
Texto completoOrozco, Luisa Fernanda, Jean-Yves Delenne, Philippe Sornay y Farhang Radjai. "Effect of particle shape on particle breakage inside rotating cylinders". EPJ Web of Conferences 249 (2021): 07002. http://dx.doi.org/10.1051/epjconf/202124907002.
Texto completoTesis sobre el tema "Active particle"
Obligado, Martín. "Fluid-particle interactions : from the simple pendulum to collective effects in turbulence". Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENI108/document.
Texto completoThis PhD thesis covers many features of fluid-particle interactions, ranging from a simple pendulum inmersed in a flow to the presence of superclusters of water droplets in a wind tunnel.The simplest case studied was a pendulum with a pendulum-blob facing the wind in the wind-tunnel. As the pendulum-blob was a plate, the aerodynamic coefficients as a function of the angle between the plate and the streamwise velocity present a non-trivial behavior, resulting in an hysteresis cycle. We also investigate the influence of turbulence on the equilibrium of the pendulum in general and on the observed bi-stability in particular.Then, different instabilities of towed systems has been studied. In chapter 4 we have seen that the wake of a sphere can produce helicoidal motion of a sphere towed by a wire. We found that there exists a particle Reynolds number Rep threshold for activating this unstable motion. A three-dimensional trajectory was reconstructed with an extremely simple experimental setup, used for characterizing the shape of particle's trajectory. In chapter 5 we investigate experimentally the equilibrium and the stability of the trajectory of a sphere towed at constant velocity in the wind tunnel at the tip of a cable with unprecedented large length-to-diameter aspect ratio. In thist chapter we study the instabilities developped in the wire for a laminar flow.Flutter and divergence instabilities has been found in this experiment.In chapter 6 the same system is studied, but the surrounding flow is turbulent. In this chapter we focus on a comparison with this towed system with freely advected particles in turbulence. Our results are consistent with a filtering scenario resulting from the viscous response time of an inertial particle whose dynamics is coupled to the surrounding fluid via the dragforce.Therefore, depending on several parameters such as the Reynolds number of the particle, the wire or the fluctuations level of the flow, a whole family of instabilities can appear, with no trivial dependencies and important consequences considering different applications of such systems.Concerning the collective effects, three different flows have been studied: a water tunnel, a von Karman flow and a wind tunnel. A broad range of Reynolds numbers, dissipation scales and particles diameters and densities has been covered. Using Voronoi diagrams, we have quantified preferential concentration as a function of the Stokes number and the Reynolds number. In chapter 7 and 8 simultaneous PIV measurements complemented the inertial particles acquisitions. The goal was to analyze if the particles tend to stick into special regions of the flow.In the last chapter also DNS have been performed for comparing with experimental results. A sweep-stick mechanism, in which inertial particles tend to have the same statistics as zero-acceleration points has been proved to be consistent with our results.Finally, a promising new technique has been presented. Based on the standard measurements, a spatial field has been reconstructed allowing us to acquire a several meters long image of particles. The enormous amount of structures present in the image has evidenced that the clusters are grouped at the same time in bigger clusters (i.e. clusters form clusters, that we call superclusters). This new result is still being studied and presents a new and fascinating field for studying particle-flow interactions
Gazuz, Igor. "Active and passive particle transport in dense colloidal suspensions". [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-66299.
Texto completoGranick, Steve. "Surprises from single-particle imaging of passive and active diffusion". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-179310.
Texto completoPullen, John. "Particle image velocimetry applied to waves with surface active films". Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/12808.
Texto completoGranick, Steve. "Surprises from single-particle imaging of passive and active diffusion". Diffusion fundamentals 20 (2013) 1, S. 1, 2013. https://ul.qucosa.de/id/qucosa%3A13521.
Texto completoTarama, Mitsusuke. "Dynamics of active deformable particle - Two types of active spinning motions and dynamics in external flow field -". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199091.
Texto completoDeptuch, Grzegorz. "New Generation of Monolithic Active Pixel Sensors for Charged Particle Detection". Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13115.
Texto completoHernandez, Jorge L. Yordan. "Kinetics of bubble-particle adhesion in flotation". Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/91117.
Texto completoM.S.
Lubbe, Elizabeth Cornelia. "Influence of particle size on solubility of active pharmaceutical ingredients / E.C. Lubbe". Thesis, North-West University, 2012. http://hdl.handle.net/10394/8763.
Texto completoThesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013
Reichert, Julian [Verfasser] y Hartmut [Gutachter] Löwen. "Transport Coefficients in Dense Active Brownian Particle Systems / Julian Reichert ; Gutachter: Hartmut Löwen". Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2021. http://d-nb.info/1227038607/34.
Texto completoLibros sobre el tema "Active particle"
A, Miller James. Final report for particle acceleration in active galactic nuclei: NASA grant NAG5-2871, period of performance: 1 Feb 1995 to 31 Jan 1996. [Washington, DC: National Aeronautics and Space Administration, 1996.
Buscar texto completoBellomo, Nicola, José Antonio Carrillo y Eitan Tadmor, eds. Active Particles, Volume 3. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93302-9.
Texto completoBellomo, Nicola, Pierre Degond y Eitan Tadmor, eds. Active Particles, Volume 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49996-3.
Texto completoBellomo, Nicola, Pierre Degond y Eitan Tadmor, eds. Active Particles, Volume 2. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20297-2.
Texto completoColloidal Robotics: Autonomous propulsion and navigation of active particles. [New York, N.Y.?]: [publisher not identified], 2020.
Buscar texto completoHult, Arne. On the development of the present active participle in Bulgarian. Göteborg: Institutum Slavicum Universitatis Gothoburgensis, 1991.
Buscar texto completoBrownian Agents and Active Particles: Collective dynamics in the natural and social sciences. Berlin: Springer, 2003.
Buscar texto completoBrowning [sic] agents and active particles: Collective dynamics in the natural and social sciences. 2a ed. Berlin: Springer, 2007.
Buscar texto completoBrowning [sic] agents and active particles: Collective dynamics in the natural and social sciences. 2a ed. Berlin: Springer, 2007.
Buscar texto completoKrugli͡akov, P. M. Hydrophile-lipophile balance of surfactants and solid particles: Physicochemical aspects and applications. Amsterdam: Elsevier Science B. V., 2000.
Buscar texto completoCapítulos de libros sobre el tema "Active particle"
Mestre, Francesc Sagués. "Particle-based Active Systems". En Colloidal Active Matter, 23–70. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003302292-3.
Texto completoJabin, Pierre-Emmanuel y Zhenfu Wang. "Mean Field Limit for Stochastic Particle Systems". En Active Particles, Volume 1, 379–402. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49996-3_10.
Texto completoHerty, Michael, Lorenzo Pareschi y Sonja Steffensen. "Control Strategies for the Dynamics of Large Particle Systems". En Active Particles, Volume 2, 149–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20297-2_5.
Texto completoKuznetsov, Alexander y Nickolay Mikheev. "Particle Dispersion in External Active Media". En Springer Tracts in Modern Physics, 45–126. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36226-2_4.
Texto completoLu, Zheng, Sami F. Masri y Xilin Lu. "Semi-active Control Particle Damping Technology". En Particle Damping Technology Based Structural Control, 331–69. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3499-7_9.
Texto completoColeman, C. S. "Relativistic Particle Streams in AGN". En Structure and Evolution of Active Galactic Nuclei, 521–23. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4562-3_40.
Texto completoJin, Shi y Lei Li. "Random Batch Methods for Classical and Quantum Interacting Particle Systems and Statistical Samplings". En Active Particles, Volume 3, 153–200. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93302-9_5.
Texto completoBaring, Matthew G. "Particle Acceleration in Turbulent Magnetohydrodynamic Shocks". En Relativistic Jets from Active Galactic Nuclei, 245–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527641741.ch9.
Texto completoPinches, Simon D. y Sergei E. Sharapov. "Energetic Particle Driven Modes". En Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas, 305–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44222-7_9.
Texto completoProtheroe, R. J. y A. P. Szabo. "High Energy Cosmic Rays from Cores of Active Galactic Nuclei". En Particle Astrophysics and Cosmology, 43–51. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1707-4_5.
Texto completoActas de conferencias sobre el tema "Active particle"
Waddington, C. Jake y Robert R. Clinton. "The C Shell, an active detector of UH nuclei". En Particle astrophysics. AIP, 1990. http://dx.doi.org/10.1063/1.39171.
Texto completovon Lockette, Paris R. y Samuel E. Lofland. "Role of Magnetization Anisotropy in the Active Behavior of Magnetorheological Elastomers". En ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5115.
Texto completoSchächter, Levi. "Particle dynamics in an active medium". En ADVANCED ACCELERATOR CONCEPTS. ASCE, 1997. http://dx.doi.org/10.1063/1.53017.
Texto completoLawandy, Nabil M. "Nano-particle plasmonics in active media". En Optics & Photonics 2005, editado por Martin W. McCall, Graeme Dewar y Mikhail A. Noginov. SPIE, 2005. http://dx.doi.org/10.1117/12.620971.
Texto completoKuzikov, S. V., A. A. Vikharev, M. E. Plotkin, D. Yu Shegolkov, J. L. Hirshfield y V. P. Yakovlev. "One-channel, multi-mode active pulse compressor". En 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4441283.
Texto completoBukosky, Scott, Nathan Anthony, Evan Bursch, Sukrith Dev, Monica Allen y Jeffery Allen. "Modeling of directed particle assembly in two-dimensional structures based on constructal law". En Active Photonic Platforms (APP) 2022, editado por Ganapathi S. Subramania y Stavroula Foteinopoulou. SPIE, 2022. http://dx.doi.org/10.1117/12.2633112.
Texto completoHamlaoui, Soumya y Franck Davoine. "Facial action tracking using particle filters and active appearance models". En the 2005 joint conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1107548.1107592.
Texto completoRodrigues, C. y A. R. Silva. "Active shunts for the LNLS storage ring quadrupoles". En 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440139.
Texto completoWilson, Andrew S. "Cosmic rays and shock waves in active galaxies". En Particle acceleration in cosmic plasmas. AIP, 1992. http://dx.doi.org/10.1063/1.42717.
Texto completoCiriza, David Bronte, Carlijn Van Baalen, Lucio Isa, Onofrio M. Maragò, Giorgio Volpe y Philip H. Jones. "Elongated active particles in speckle fields". En Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jw4a.22.
Texto completoInformes sobre el tema "Active particle"
Mills, Brantley, Samuel Lee, Luis Gonzalez-Portillo, Clifford Ho y Kevin Albrecht. Technoeconomics of Particle-based CSP Featuring Falling Particle Receivers with and without Active Heliostat Control. Office of Scientific and Technical Information (OSTI), septiembre de 2022. http://dx.doi.org/10.2172/1890267.
Texto completoLemley, James y Michael Furey. Improved Design of Active Pixel CMOS Sensors for Charged Particle Detection. Office of Scientific and Technical Information (OSTI), noviembre de 2007. http://dx.doi.org/10.2172/971516.
Texto completoThomassen, K. Report on the US-Japan Workshop - Plasma Fueling and Active Particle Control. Office of Scientific and Technical Information (OSTI), marzo de 2000. http://dx.doi.org/10.2172/792790.
Texto completoJiang, Rongzhong y Charles Rong. Ultrasound-assisted Micro-emulsion Synthesis of a Highly Active Nano-particle Catalyst. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2010. http://dx.doi.org/10.21236/ada516686.
Texto completoPinnick, Ronald G., J. D. Pendleton y Gorden Videen. Response Characteristics of Active Scattering Aerosol Spectrometer Probes Made by Particle Measuring Systems. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2000. http://dx.doi.org/10.21236/ada376912.
Texto completoNagaitsev, Sergei. Comment on Particle acceleration by stimulated emission of radiation near a solid-state active medium. Office of Scientific and Technical Information (OSTI), mayo de 2011. http://dx.doi.org/10.2172/1016885.
Texto completoSery, Joseph. Development of Active Absorbers Using a Matrix of Tungsten Powder and Epoxy for Particle Detection in Nuclear Physics. Final Technical Report SBIR Award No. DE-SC0015185. Office of Scientific and Technical Information (OSTI), enero de 2019. http://dx.doi.org/10.2172/1491479.
Texto completoMorkun, Volodymyr, Natalia Morkun, Andrii Pikilnyak, Serhii Semerikov, Oleksandra Serdiuk y Irina Gaponenko. The Cyber-Physical System for Increasing the Efficiency of the Iron Ore Desliming Process. CEUR Workshop Proceedings, abril de 2021. http://dx.doi.org/10.31812/123456789/4373.
Texto completoBalch, William M. y Cynthia H. Pilskaln. Transport of Optically Active Particles from the Surface Mixed Layer. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2003. http://dx.doi.org/10.21236/ada620100.
Texto completoPlueddemann, Albert J. Chalk-Ex: Transport of Optically Active Particles from the Surface Mixed Layer. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2005. http://dx.doi.org/10.21236/ada444169.
Texto completo