Tesis sobre el tema "Active mater"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Active mater.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores tesis para su investigación sobre el tema "Active mater".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Fins, Carreira Aderito. "Matière active versus gravité : équation d’état et capillarité effectives de suspensions de particules autopropulsées". Electronic Thesis or Diss., Lyon 1, 2023. http://www.theses.fr/2023LYO10130.

Texto completo
Resumen
La matière active est un domaine en pleine expansion au cours de ces dernières années. Elle est constituée d'entités capables d'utiliser une source d'énergie pour produire un travail local comme de l'auto-propulsion. Cette matière, hors équilibre, possède des propriétés fascinantes comme l'auto-organisation telle qu'observée dans une nuée d'oiseaux. Cependant, cette matière ne se limite pas au vivant et des système actifs abiotiques ont été développés. En particulier, au cours de cette thèse, nous utilisons des microparticules auto-propulsées. Nos objectifs sont de comprendre comment elles s'organisent en présence de gravité et au contact d'une paroi. Notre système est constitué de colloïdes Janus Au/Pt capables de s'auto-propulser en présence d'eau oxygénée par des mécanismes phorétiques. Les colloïdes étant plus denses que l'eau, ils forment une monocouche au fond du récipient. Si ce fond est légèrement incliné, nous observons une sédimentation 2D. Pour les systèmes colloïdaux à l'équilibre, le profil de sédimentation renferme l'équation d'état du système. Pour les systèmes actifs, une équation d'état n'existe pas dans le cas général mais on peut toutefois définir des grandeurs thermodynamiques analogues. J'ai mesuré le profil de sédimentation de mon système actif et je l'ai confronté à des modèles développés pour des particules brownienne actives en milieu « sec » (ABPs). J'ai pu ainsi montrer que le rôle du fluide porteur ne peut être négligé. Dans une deuxième partie, nous nous sommes intéressés aux propriétés de mouillage de ce système. La matière active est connue pour présenter des propriétés de mouillage effectives mais aucune étude expérimentale avec un système analogue au notre ne s'est focalisée sur le phénomène de mouillage d'une paroi plongée à la verticale dans un sédiment. Nous montrons qu'il s'y forme une couche d'adhésion accompagnée d'une remontée de la densité à la paroi. Pour mieux comprendre les phénomènes observés, nous les avons confrontés à un modèle numérique d'ABPs pour lequel nous pouvons faire varier les interactions entre les particules et la paroi. En jouant sur l'adhésion et l'alignement à la paroi, on est capable de reproduire les résultats expérimentaux. En effet, l'implémentation de ces interactions à la paroi permet, dans une certaine mesure, de prendre en compte numériquement le fluide porteur et donc les interactions hydrodynamique et phorétique de nos colloïdes avec la paroi. On montre ainsi que ces interactions exacerbe grandement la polarisation de la vitesse de propulsion des particules à la paroi qui est en grande partie à l'origine de la remontée de densité. En effet, il a été démontré qu'en régime stationnaire et dilué, les particules loin de la paroi sont capables de se polariser à l'encontre de la gravité. Nous montrons que cette polarisation est amplifiée par un alignement sur une paroi verticale. De plus, l'ajout d'une attraction supplémentaire permet de piéger plus fortement les particules le long de la paroi qui vont alors remonter plus haut que ne le feraient des ABPs sans interactions avec la paroi. Au fur à mesure de leur ascension, les particules vont « s'évaporer » et chuter loin de la paroi conduisant à des mouvements globaux dans le système. La paroi agit comme un moteur de la circulation qui met en mouvement les particules dans le système de façon collective à une échelle bien plus grande que celle de la particule. Enfin, dans la perspective de caractériser la microrhéologie de la matière active, nous présentons également dans cette thèse l'ensemble des avancées sur la conception d'un nouveau microrhéomètre magnétique ainsi que les travaux sur la stabilisation des colloïdes sur des surfaces de verre dans l'objectif de concevoir des cellules d'imagerie sur mesure
Active matter is a rapidly expanding field in recent years. It consists of entities able to use an energy source to produce local work such as self-propulsion. Such matter, by being out of equilibrium, has fascinating properties such as self-organization as seen in a flock of birds. However, active matter is not limited to biological systems. Active abiotic systems have also been developed. Indeed, during this thesis, we study a system made of self-propelled microparticles. Our objectives are to understand how they organize in the presence of gravity and in contact with a wall. Our system is made of Janus Au/Pt colloids that can self-propel in the presence of hydrogen peroxide by phoretic mechanisms. The colloids being denser than water, they form a monolayer on the bottom of their container. Provided a small tilting angle, we can observed 2D sedimentation. For colloidal systems at equilibrium, the sedimentation profile contains the equation of state of the system. For active systems, an equation of state does not exist in the general case, but analogous thermodynamic quantities can be defined. I measured the sedimentation profile of my active system and compared it to models developed for active Brownian particles in a "dry" environment (ABPs). I showed that the role of the background fluid cannot be neglected. In a second part, we studied the wetting properties of our system. Active mater is known to have effective wetting properties, yet no experimental study with a system analogous to ours has focused on the wetting phenomenon of a wall vertically immersed in a sediment. We show that an adhesion layer is formed with the density rising at the wall. To better understand the observed phenomena, we have confronted them with a numerical model of ABPs for which we can vary the interactions between the particles and the wall. By playing on the adhesion and the alignment with the wall, we are able to reproduce the experimental results. Indeed, the implementation of these interactions at the wall enables, to a certain extent, to take into account numerically the background fluid and thus the hydrodynamic and phoretic interactions that our colloids have with the wall. We thus show that these interactions greatly exacerbates the polarization of the propulsion velocity of the particles at the wall which is largely responsible for the density rise. Indeed, it is known that in the dilute and stationary regime, particles far from the wall are able to polarize against gravity. This polarization is amplified by an alignement with a vertical wall. Furthermore, the addition of an additional attraction allows particles to be more strongly trapped at the wall, and rise higher than ABPs without wall interactions would. As they rise, the particles will "evaporate" and fall away from the wall leading to global fluxes in the system. The wall acts as a pump that sets the particles in motion in the system collectively at a much larger scale than the particle. Finally, because we want to investigate the microrheology on active matter, we also present in this thesis all the updates on the design of a new magnetic microrheometer as well as the work on the stabilization of colloids on glass surfaces with the objective of designing custom imaging cells
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wioland, Hugo. "Self-organisation of confined active matter". Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/248745.

Texto completo
Resumen
Active matter theory studies the collective behaviour of self-propelled organisms or objects. Although the field has made great progress in the past decade, little is known of the role played by confinement and surfaces. This thesis analyses the self-organisation of dense bacterial suspensions in three different microchambers: flattened drops, racetracks and lattices of cavities. Suspensions of swimming bacteria are well-known to spontaneously form macroscopic quasi-turbulent patterns such as jets and swirls. Confinement inside flattened drops and racetracks stabilises their motion into a spiral vortex and wavy streams, respectively. We have quantitatively measured and analysed bacterial circulation and discovered cells at the interfaces to move against the bulk. To understand this phenomenon, we developed a method able to measure simultaneously the directions of swimming and of motion. Experiments in drops reveal that cells align in a helical pattern, facing outward and against the main bulk circulation. Likewise, bacteria in racetracks share a biased orientation against the overall stream. Particle-based simulations confirm these results and identify hydrodynamic interactions as the main driving force: bacteria generate long-range fluid flows which advect the suspension in the bulk against its swimming direction, resulting in the double-circulation pattern. We have finally injected dense suspensions of bacteria into lattices of cavities. They form a single vortex in each cavity, initially spinning clockwise or counterclockwise with equal probabilities. Changing the topology of the lattice and the geometry of connections between cavities allows us to control the lattice state (random, ferromagnetic, antiferromagnetic, or unstable). Edge currents along interfaces and connections appear to determine the lattice organisation. We finally propose an Ising model to understand experimental results and estimate Hamiltonian and interactions parameters. This work opens new perspectives for the study of active matter and, we hope, will have a great impact on the field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Fürthauer, Sebastian. "Active Chiral Processes in Soft Biological Matter". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-90152.

Texto completo
Resumen
Biological matter is driven far from thermodynamic equilibrium by active processes on the molecular scale. These processes are usually driven by the chemical reaction of a fuel and generate spontaneous movements and mechanical stresses in the system, even in the absence of external forces or torques. Moreover these active stresses effectively fluidify the material. The cell cytoskeleton, suspensions of swimming microorganisms or tissues are prominent examples of active fluids. Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological micro-swimmers. Moreover, large scale chiral flows have been observed in the cell cortex of C. elegans and Xenopus embryos. Active force generation induces force and torque dipoles in the material. If all forces are internal the total force and torque vanish as required by the conservation of momentum and angular momentum. The density of force dipoles is an active stress in the material. In addition, active chiral processes allow for the existence of active torque dipoles which enter the conservation of angular momentum and generate an active antisymmetric stress and active angular momentum fluxes. We developed a generic description of active fluids that takes into account active chiral processes and explicitly keeps track of spin and orbital angular momentum densities. We derived constitutive equations for an active chiral fluid based on identifying the entropy production rate from the rate of change of the free energy and linearly expanding thermodynamic fluxes in terms of thermodynamic forces. We identified four elementary chiral motors that correspond to localized distributions of chiral force and torque dipoles that differ by their symmetry and produce different chiral fluid flows and intrinsic rotation fields. We employ our theory to analyze different active chiral processes. We first show that chiral flows can occur spontaneously in an active fluid even in the absence of chiral processes. For this we investigate the Taylor-Couette motor, that is an active fluid confined between two concentric cylinders. For sufficiently high active stresses the fluid generates spontaneous rotations of the two cylinders with respect to each other thus breaking the chiral symmetry of the system spontaneously. We then investigate cases where active chiral processes on the molecular scale break the chiral symmetry of the whole system. We show that chiral flows occur in films of chiral motors and derive a generic theory for thin films of active fluids. We discuss our results in the context of carpets of beating cilia or E. coli swimming close to a surface. Finally, we discuss chiral flows that are observed in the cellular cortex of the nematode C. elegans at the one cell stage. Two distinct chiral flow events are observed. The first chiral flow event (i) is a screw like chiral rotation of the two cell halves with respect to each other and occurs around 15min after fertilization. This event coincides with the establishment of cortical cell polarity. The second chiral flow event (ii) is a chiral rotation of the entire cell cortex around the anterior posterior axis of the whole cell and occurs around 30min after fertilization. Measuring densities of molecular motors during episode (i) we fit the flow patterns observed using only two fit parameters: the hydrodynamic length and cortical chirality. The flows during (ii) can be understood assuming an increase of the hydrodynamic length. We hypothesize that the cell actively regulates the cortical viscosity and the friction of the cortex with the eggshell and cytosol. We show that active chiral processes in soft biological matter give rise to interesting new physics and are essential to understand the material properties of many biological systems, such as the cell cortex.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Watson, Rose E. (Rose Elliott). "Active or Passive Voice: Does It Matter?" Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc501082/.

Texto completo
Resumen
This thesis reports on the use of active and passive voice in the workplace and classroom through analysis of surveys completed by 37 employees and 66 students. The surveys offered six categories of business writing with ten sets of two sentences each, written in active and passive voice. Participants selected one sentence from each set and gave a reason for each selection. The participants preferred active over passive 47 to 46 percent of opportunities, but they preferred mixed voice over both, 49 percent. The participants preferred active only for memos to supervisors; in the other five categories they preferred passive or mixed voice. Both males and females preferred mixed voice, and age appeared to influence the choices. They cited context as the most common reason for using passive.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Steimel, Joshua Paul. "Investigating non-equilibrium phenomena in active matter systems". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111339.

Texto completo
Resumen
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 189-209).
Active matter systems have very recently received a great deal of interest due to their rich emergent non-equilibrium behavior. Some of the most vital and ubiquitous biological systems and processes are active matter systems including reproduction, wound healing, dynamical adaptation, chemotaxis, and cell differentiation. Active matter systems span multiple length scales from meter to nanometer and can vary depending on the shape of the active agent, mode of motility, and environment. However, active matter systems are unified in that they are all composed of active units or particles that continuously convert ambient, stored, or chemical energy locally into motion and exhibit emergent non-equilibrium collective dynamical or phase behavior. Active matter systems have been studied extensively in the biological context, as well as in simulation and theory. However, there are relatively few artificial or synthetic experimental model soft active matter systems that can effectively mimic the rich emergent behavior exhibited by many active matter systems. Such model experimental systems are crucial not only to confirm the exotic behavior predicted by theoretical and simulation systems, but to study and investigate the underlying physical phenomenon which may contribute to or even drive some emergent phenomenon. These model systems are crucial to help determine what behavior is due to purely physical phenomenon and what behavior requires some type of biological or biochemical stimuli. In this thesis, I will develop several artificial experimental model active matter systems that are able to effectively mimic and reproduce some of the rich emergent non-equilibrium behavior exhibited by several active matter systems or processes, like chemotaxis, in order to uncover the underlying physical phenomenon that govern this emergent behavior. I will start by designing an extremely simple active matter system composed of a single active unit and then build up in complexity by adding many active components, changing the mode of motility, and including passive components which may or may not be fixed. I will show in this thesis that this emergent behavior is guided by fundamental physical phenomenon like friction and the mechanical properties of the environment. The thesis divides this study into two Parts. In Part I, I will develop an artificial soft active matter system that is able to effectively perform chemotaxis in a non-equilibrium manner by leveraging the concept of effective friction. The active component in this system will be magnetic particles that are coated with a biological ligand or receptor and placed on a substrate with the corresponding ligand or receptor. A rotating magnetic field will be applied and the magnetic particle will proceed to rotate with the applied field and convert some of that rotational energy into translational energy due to the effective friction induced by the breaking of reversible bonds between the surface of the particle and the substrate. I will then create gradients in the density of such binding sites and by placing the magnetic particle on a stochastic, random walk the differences in effective friction will lead to directed motion or drift reminiscent of chemotaxis. I will show that this concept of sensing based on effective friction induced by a binding interaction is general and scales with the affinity of the interaction being investigated (i.e. protein-lipid, metal ion, electrostatic, antigen-antibody, or hydrophobic interactions). In Part II, I will build up in complexity and develop an artificial soft active matter system consisting of two active units embedded in a dense passive matrix in order to mimic the emergent behavior of many biological systems composed of both active and passive components. In this system, an ultra-long range attractive interaction emerges due to a combination of activity and the mechanical properties of the dense passive media. The range of the interaction can be tuned by changing the level of activity, the actuation protocol, the mode of motility, the composition of the dense passive monolayer, and the concentration of active units. Alternatively, if the passive components are fixed to the substrate, the active components undergo a disorder induced delocalization and exhibit super-diffusive transport properties. On the basis of these results, I propose several guidelines to developing novel artificial soft active matter systems which bear future investigation. The findings in this thesis represent a comprehensive study of the exotic emergent non-equilibrium behavior exhibited by many active matter systems by developing novel artificial experimental soft model active matter systems. These novel model experimental systems revealed some underlying fundamental physical phenomenon that contribute to some of the non-equilibrium behavior observed in the biological system of interest. These results may generalize not only to other simulation or theoretical active matter systems but potentially to biological systems as well. This work will be essential not only in guiding the design of future artificial experimental soft active matter systems, but can also be extended towards designing hybrid artificial-biological soft active matter systems.
by Joshua Paul Steimel.
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Woodhouse, Francis Gordon. "Cytoplasmic streaming and self-organisation of active matter". Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648534.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Watson, Garrett (Garrett A. ). "A method for detecting nonequilibrium dynamics in active matter". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120209.

Texto completo
Resumen
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 55-56).
Active force generation is an important class of out-of-equilibrium activity in cells. These forces play a crucial role in vital processes such as tissue folding, cell division and intracellular transport. It is important to determine the extent of such nonequilibrium activity during cellular processes to understand cell function. Here we present a framework for measuring nonequilibrium activity in biological active matter using time reversal asymmetry based on the Kullbeck-Leibler Divergence (KLD), also known as relative entropy. We estimate the KLD from a stationary time series using a k-nearest neighbors estimator, comparing the time-forwards process to the time-reversed process Using time series data of probe particles embedded in the actin cortex, we establish a lower bound for the entropy production of cortical activity. Our results demonstrate a reliable way to measure the breaking of detailed balance in mesoscopic systems.
by Garrett Watson.
S.B.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ahmed, Israr. "Mathematical and computational modelling of soft and active matter". Thesis, University of Central Lancashire, 2016. http://clok.uclan.ac.uk/18641/.

Texto completo
Resumen
The collective motion of organisms such as flights of birds, swimming of school of fish, migration of bacteria and movement of herds across long distances is a fascinating phenomenon that has intrigued man for centuries. Long and details observations have resulted in numerous abstract hypothesis and theories regarding the collective motion animals and organisms. In recent years the developments in supercomputers and general computational power along with highly refined mathematical theories and equations have enabled the collective motion of particles to be investigated in a logical and systematic manner. Hence, this study is focused mathematical principles are harnessed along with computational programmes in order to obtain a better understanding of collective behaviour of particles. Two types of systems have been considered namely homogeneous and heterogeneous systems, which represent collective motion with and without obstacles respectively. The Vicsek model has been used to investigate the collective behaviour of the particles in 2D and 3D systems. Based on this, a new model was developed: the obstacle avoidance model. This showed the interaction of particles with fixed and moving obstacles. It was established using this model that the collective motion of the particles was very low when higher noise was involved in the system and the collective motion of the particles was higher when lower noise and interaction radius existed. Very little is known about the collective motion of self-propelled particles in heterogeneous mediums, especially when noise is added to the system, and when the interaction radius between particles and obstacles is changed. In the presence of moving obstacles, particles exhibited a greater collective motion than with the fixed obstacles. Collective motion showed non-monotonic behaviour and the existence of optimal noise maximised the collective motion. In the presence of moving obstacles there were fluctuations in the value of the order parameter. Collective systems studies are highly useful in order to produce artificial swarms of autonomous vehicles, to develop effective fishing strategies and to understand human interactions in crowds for devising and implementing efficient and safe crowd control policies. These will help to avoid fatalities in highly crowded situations such as music concerts and sports and entertainment events with large audiences, as well as crowded shopping centres. In this study, a new model termed the obstacle avoidance model is presented which investigates the collective motion of self-propelled particles in the heterogeneous medium. In future work this model can be extended to include a combination of a number of motionless and moving obstacles hence bringing the modelling closer to reality.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mahault, Benoît. "Outstanding problems in the statistical physics of active matter". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS250/document.

Texto completo
Resumen
La matière active, désignant les systèmes hors d’équilibre composés de particules étant capable d’utiliser l’énergie présente dans leur environnement afin de se déplacer de façon systématique, a suscité beaucoup d’attention auprès des communautés de mécanique statistique et matière molle ces dernières décennies. Les systèmes actifs couvrent en effet un large panel d’exemples allant de la biologie aux granulaires. Cette thèse se concentre sur l’étude de modèles minimaux de matière active sèche (ceux pour lesquels le fluide dans lequel les particles sont immergées est négligé), tel que le modèle de Vicsek qui considère des particules ponctuelles se déplaçant à vitesse constante tout en alignant leur direction de mouvement avec celles de leurs voisins localement en présence de bruit, et définit une classe d’universalité hors équilibre pour la transition vers le mouvement collectif. Quatre problèmes en suspens ont été abordés : La définition d’une classe d’universalité en matière active sèche qui décrit des systèmes de particles présentant un alignement polaire et un mouvement apolaire. Cette nouvelle classe exhibe une transition continue vers un quasi-ordre polaire doté d’exposants variant continument, et donc analogue au modèle XY à l’équilibre, mais n’appartenant pas à la classe d’universalité Kosterlitz-Thouless. Ensuite, l’étude de la validité des théories cinétiques décrivant les modèles de type Vicsek, qui sont confrontées aux résultats obtenus aux niveaux microscopique et hydrodynamique. Puis une évaluation quantitative de la théorie de Toner et Tu, permettant de mesurer les exposants caractérisant les fluctuations dans la phase ordonnée du modèle de Vicsek, à partir de simulations numériques à grande échelle du modèle microscopique. Enfin, la création d’un formalisme pour la dérivation d’équations hydrodynamiques à partir de modèles de matière active sèche à trois dimensions, ainsi que leur étude au niveau linéaire
Active matter, i.e. nonequilibrium systems composed of many particles capable of exploiting the energy present in their environment in order to produce systematic motion, has attracted much attention from the statistical mechanics and soft matter communities in the past decades. Active systems indeed cover a large variety of examples that range from biological to granular. This Ph.D. focusses on the study of minimal models of dry active matter (when the fluid surrounding particles is neglected), such as the Vicsek model: point-like particles moving at constant speed and aligning their velocities with those of their neighbors locally in presence of noise, that defines a nonequilibrium universalilty class for the transition to collective motion. Four current issues have been addressed: The definition of a new universality class of dry active matter with polar alignment and apolar motion, showing a continuous transition to quasilong-range polar order with continuously varying exponents, analogous to the equilibrium XY model, but that does not belong to the Kosterlitz-Thouless universality class. Then, the study of the faithfulness of kinetic theories for simple Vicsek-style models and their comparison with results obtained at the microscopic and hydrodynamic levels. Follows a quantitative assessment of Toner and Tu theory, which has allowed to compute the exponents characterizing fluctuations in the flocking phase of the Vicsek model, from large scale numerical simulations of the microscopic dynamics. Finally, the establishment of a formalism allowing for the derivation of hydrodynamic field theories for dry active matter models in three dimensions, and their study at the linear level
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Peng, Chenhui. "ACTIVE COLLOIDS IN ISOTROPIC AND ANISOTROPIC ELECTROLYTES". Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1480622734084146.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Işık, Onur Turan Gürsoy. "Response improvement by using active control of an earthquake excited building/". [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/insaatmuh/T000482.doc.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Butcher, Nicholas David. "Active Paralleling of High Power Voltage Source Inverters". Thesis, University of Canterbury. Electrical and Computer, 2007. http://hdl.handle.net/10092/3430.

Texto completo
Resumen
Power electronics are becoming established in ever broadening areas of industry. The transition from previous generation technology is driven by the oportunity for improvements in controllability, efficiency, and longevity. A wide variety of power semiconductors are available, however power handling capacity is still a significant limitation for many applications. An increase in the capacity of a single device is usually accompanied by a drop in switching frequency, and hence achievable system bandwidth. Increased capacity can be attained without this loss in bandwidth by using multiple lower power devices in parallel. Products based on parallel device topologies are already present in the marketplace, however there are many associated complications. The nature of these complications depends on the control method and topology used, but no system combines high performance and high power with high reliability and easy maintainability. This research aims to identify and develop a method that would provide a system of voltage source inverters with a total capacity in excess of 10MVA, with effective control bandwidth comparable to a 100kVA system. Additionally, the method should be equally applicable at still higher power levels in the future with the anticipated development of higher capacity power semiconductors. The primary goal when using paralleled devices is to achieve an even distribution of system load between them, as unbalanced load leads to poor system utilisation. Devices can be paralleled either passively, in which devices are controlled in common and characteristics inherent to the device are relied upon to balance load; or actively, in which devices are individually controlled and monitored to improve load balance. A key component of the thesis is the identification and analysis of the inadequacies inherent to passively paralleled systems. It is the limitations of passive paralleling that provide the motivation to develop an active parallel control mechanism. Following the analysis, an active control algorithm is developed and implemented on a paralleled system. The proposed system topology consists of an array of medium power Voltage Source Inverter (VSI) modules operating in parallel. Each module is controlled semi-independently at a local level, with an inter-module communications network to enable active equalisation of module load, and redundant fault management. An innovative load equalisatiion algorithm is developed and proven, the key feature of which is this inclusion of a synthetic differential resistance between modules within the system. The result is a modular expandable structure offering the potential for very high power capacity combined with quality of response usually only found in low power systems. The system as a whole is extremely reliable as any module can be isolated in the event of a fault without significantly affecting the remainder of the network. Performance results from both simulation and experimentation on a two module small scale prototype are given. Using the developed topology and control method extremely accurate load balancing can be achieved without degradation of the response characteristics. The system is tested up to only 2.4kW in the course of this research, but the correlation with simulation is high and gives confidence that the developed mechanism will allow the 10MV A goal to be achieved. Following the developmental stage of this research the technology has been applied to a commercial system comprising parallel structures of up to 8 modules with a total power handling capacity of 1MVA with no deterioration in performance. 2MVA systems are deliverable with the current technology without any changes, and higher power levels are expected to be easily achieved.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Mecitoğlu, Güçbilmez Çiğdem Yemenicioğlu Ahmet. "Production of functional packaging materials by use of biopreservatives/". [s.l.]: [s.n.], 2005. http://library.iyte.edu.tr/tezlerengelli/master/biyoteknoloji/T000356.pdf.

Texto completo
Resumen
Thesis (Master)--İzmir Institute of Technology, İzmir, 2005.
Keywords: Biopreservatives, antimicrobial enzymes, antioxidant proteins, edible films, functional packaging materials. Includes bibliographical references (leaves.88-101).
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Dal, Cengio Sara. "Competition and Response: from Active Matter to Electrolytes under Confinement". Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670864.

Texto completo
Resumen
Most systems in Nature manifest complex transport phenomena arising from the interplay of multiple time and length scales, be them intrinsic in the system’s dynamics or externally enforced. It is the case, for instance, of a colony of migrating cells whose competing mechanisms of self-propulsion and interaction allow for the reorganization into different tissues. Or, by ‘zooming in’ and looking at the same system on a different scale, it is the case of the ionic channels located in the membranes of the aforesaid cells. These channels typically exhibit extraordinary ion selectivity and water permeability due to the interplay between geometric confinement, surface properties and external drivings. Whether to investigate the collective structures of the former system, or the nanofluidic properties of the latter one rests on the interests of the reader. In any case, she will find some food for thought in this thesis. Here we aim at the study of the transport properties of two very different classes of systems: active matter and electrolytes under confinement. In the examples above drawn from biology, cell tissues belongs to the class of active matter and protein channels are the archetype nanometric ionic systems. We tackle the problem from a purely statistical physics viewpoint by constructing minimal models to study the system’s response to outside influences and, by doing so, learn something about its internal properties. In the case of active matter, the challenge resides in the intrinsically out-of-equilibrium nature of its constituents, having the ability to self-propel by consuming fuel stored in the environment. In Part I of the manuscript, we study how the interplay between self-propulsion and steric interactions affects the linear response of active systems. First, we construct a very general theoretical framework which allows to derive general constraints that arbitrarily out-of-equilibrium systems must fulfilled. Then, we apply it to two different minimal models of active systems to derive generalized fluctuation-dissipation relations and Green-Kubo expressions. In Part II of the manuscript we investigate the surface-dominated transport of electrolytes in (i) a nanofluidic diode and (ii) a scanning ionic conductance microscopy configuration. In both cases, we develop a theory of ionic conductivity that rationalizes previous experimental results. By doing so, we shed light on the importance of the surface versus bulk competition in controlling ionic transport and we propose a new approach to exploit it for the imaging of surface charge with nanometric resolution.
La mayoría de los sistemas en la Naturaleza manifiestan fenómenos de transporte complejos que surgen de la interacción de múltiples escalas de tiempo y longitud, ya sean intrínsecas en la dinámica del sistema o forzadas externamente. Es el caso, por ejemplo, de una colonia de células migratorias cuyos mecanismos competitivos de autopropulsión e interacción permiten la reorganización en diferentes tejidos; o, al "acercar" y mirar el mismo sistema en una escala diferente, es el caso de los canales iónicos ubicados en las membranas de las células mencionadas. Estos canales exhiben típicamente una selectividad de iones extraordinaria y permeabilidad al agua debido a la interacción entre el confinamiento geométrico, las propiedades de la superficie y los conductos externos. Ya sea para investigar las estructuras colectivas del primer sistema, o las propiedades nanofluídicas del último, se basa en los intereses del lector. En cualquier caso, encontrará algo de reflexión en esta tesis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kyriakopoulos, Nikos. "Flocking in active matter systems : structure and response to perturbations". Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231666.

Texto completo
Resumen
Flocking, the collective motion of systems consisting of many agents, is a ubiquitous phenomenon in nature, observed both in biological and artificial systems. The understanding of such systems is important from both a theoretical point of view, as it extends the field of statistical physics to non-equilibrium systems, and from a practical point of view, due to the emergence of applications that are based on the modelling. In the present thesis I numerically investigated several aspects of flocking dynamics, simulating systems consisting of up to millions of particles. One first problem I worked on regarded the flocks response to external perturbations, something that had received little attention so far. The result was a scaling relation, connecting the asymptotic response of a flock to the strength of the external fleld affecting it. Additionally, my preliminary results point towards a generalised fluctuation-dissipation relation for the short-time response, with two different effective temperatures depending on the direction at which the perturbing field is applied. Another aspect I studied was the stability and dynamical properties of non-confined active systems (finite flocks in open space). The results showed that these flocks are stable only when an attracting 'social force' keeps the agents from drifting away from each other. The velocity fluctuations correlations were found to be different than the asymptotic limit predictions of hydrodynamic theories for infinite flocks. Finally, I studied the clustering dynamics of flocking systems. The conclusion was that the non-equilibrium clustering in the ordered phase is regulated by an anisotropic percolation transition, while it does not drive the order-disorder transition, contrary to earlier conjectures. I believe the results of this work answer some important questions in the field of ordered active matter, while at the same time opening new and intriguing ones, that will hopefully be tackled in the near future.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Hubrich, Hanna. "Active Matter in Confined Geometries - Biophysics of Artificial Minimal Cortices". Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-152A-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Peshkov, Anton. "Boltzmann-Ginzburg-Landau approach to simple models of active matter". Paris 6, 2013. http://www.theses.fr/2013PA066340.

Texto completo
Resumen
Le phénomène de mouvement collectif est présent parmi beaucoup de systèmes biologiques comme dans les volées d'oiseaux ou des bancs de poissons. Dans ces systèmes, le mouvement collectif apparait sans aucun leader ni force extérieure et est exclusivement dû à l'interaction parmi les individus et à la nature hors-équilibre de tout le système. Nous voulons étudier des modèles simples de mouvement collectif afin d'établir des classes d'universalité parmi la matière active sèche, c'est-à-dire des individus interagissant sans l'aide d'un fluide. Beaucoup de ces systèmes ont déjà été étudiés microscopiquement. Nous voulons obtenir des équations hydrodynamiques de ces systèmes pour confirmer les résultats microscopiques et pour prédire des propriétés nouvelles. Nous effectuons une dérivation d'équations hydrodynamiques en utilisant l'approche Boltzmann-Ginzburg-Landau introduit dans cette thèse. Quatre modèles de type Vicsek sont considérés. Un modèle polaire simple identique au modèle de Vicsek, un modèle mixte avec des particules polaires avec interactions nématiques, un modèle avec des particules polaires et interactions nématiques et finalement un modèle avec des particules polaires avec des interactions non-métriques. Dans chaque cas les équations obtenues sont étudiées de façon analytique et numérique. Nous trouvons que les équations obtenues reproduisent de façon fidèles les propriétés qualitatives des modèles microscopiques considérées, comme les différentes phases observées et la nature de transition entre ces phases. Dans certains cas des phases nouvelles sont trouvées, qui n'ont pas été reportées auparavant dans les modèles microscopiques. Beaucoup d'entre elles ont été confirmées a posteriori dans les simulations numériques de ces modèles
The phenomenon of collective motion is present among many different biological systems like bird flocks or fish schools. In these systems, the collective motion arises without any leader or external force, and is only due to interaction among individuals and the out of equilibrium nature of the whole system. We want to study simple models of collective motion in order to establish universality classes among dry active matter, i. E. Individuals that interact without the help of a fluid medium. Many of such systems have already been studied microscopically. We want to obtain coarse-grained equations of such models to confirm the microscopical results and to predict new properties. We perform a derivation of hydrodynamic equations using the introduced Boltzmann-Ginzburg-Landau approach. The equations are derived for four different Vicsek type models. A simple polar model, a mixed case of polar particles with nematic interactions, a model of nematic particles with nematic interactions and finally a model for polar particles with metric free interactions. In each case, the obtained equations are studied analytically and numerically. We find out that the hydrodynamic equations reproduce faithfully the qualitative properties of underlying microscopical models, like the different observed phases and the nature of phase transition between them. Some new phases not previously observed in microscopical models are found. Most of them where a posteriori confirmed in simulations of microscopical models
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Teeffelen, Sven van. "Active and passive soft matter: crystal growth, confinement, and swimming". Aachen Shaker, 2008. http://d-nb.info/992522447/04.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Fersula, Jérémy. "Swarm Robotics : distributed Online Learning in the realm of Active Matter". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS494.

Texto completo
Resumen
Avec la miniaturisation des composants électroniques et l’augmentation des performances des CPU / GPU modernes, il devient techniquement possible de développer de petits robots capables de travailler en essaims de centaines ou de milliers d’unités. Lorsque l’on considère des systèmes composés d’un grand nombre de robots indépendants en interaction, l’individualité s’efface devant le collectif, et le comportement global de l’ensemble doit émerger de règles locales. Comprendre la dynamique d’un grand nombre d’unités en interaction devient une connaissance clé pour concevoir des essaims robotiques contrôlables et efficaces. Ce sujet est au cœur du domaine de la matière active, dans lequel les systèmes d’intérêt présentent des effets collectifs émergeant d’interactions physiques sans calcul. Cette thèse vise à utiliser des éléments de la matière active pour concevoir et comprendre des collectifs robotiques, interagissant à la fois au niveau physique et au niveau logiciel par le biais d’algorithmes d’apprentissage distribués. Nous commençons par étudier expérimentalement la dynamique d’agrégation d’un essaim de petits robots vibrants effectuant la phototaxie (c’est-à-dire la recherche de lumière). Les expériences sont déclinées dans différentes configurations, soit ad-hoc, soit mettant en œuvre un algorithme d’apprentissage distribué en ligne. Cette série d’expériences sert de référence pour l’algorithme, en montrant ses capacités et ses limites dans une situation réelle. Ces expériences sont approfondies en changeant la forme extérieure des robots, ce qui modifie les interactions physiques en ajoutant une réponse en orientation aux forces extérieures. Cet effet supplémentaire modifie la dynamique globale de l’essaim, montrant que le computation morphologique est en jeu. La nouvelle dynamique est comprise grâce à un modèle physique d’auto-alignement, ce qui permet d’étendre le travail expérimental in sillico et de suggérer de nouveaux effet à grande échelle dans les essaims de robots qui se réorientent. Enfin, nous présentons un modèle d’apprentissage distribué par le biais d’équations différentielles stochastiques. Ce modèle est basé sur l’échange de degrés de liberté internes qui s’associent à la dynamique des particules, qui sont les équivalents dans le contexte de l’apprentissage à un ensemble de paramètres et à un contrôleur. Le modèle donne des résultats similaires en simulation à ceux des expériences réelles et ouvre la voie à une analyse théorique à grande échelle de la dynamique produite par l’apprentissage distribué en ligne
CPUs / GPUs, it becomes technically possible to develop small robots able to work in swarms of hundreds or thousands of units. When considering systems comprised of a large number of in- dependent robots in interaction, the individuality vanishes before the collective, and the global behavior of the ensemble has to emerge from local rules. Understanding the dynamics of large number of interacting units becomes a knowledge key to design controllable and efficient robotic swarms. This topic happens to be at the core of the field of active matter, in which the sys- tems of interest display collective effects emerging from physical interactions without computation. This thesis aims at using elements of active matter to design and understand robotic collectives, interacting both at the physical level and the software level through distributed learning algorithms. We start by studying experimentally the aggregation dynamics of a swarm of small vibrating robots performing phototaxis (i.e. search of light). The experiments are declined in different confi- gurations, either ad-hoc or implementing a distributed and online learning algorithm. This series of experiments act as a benchmark for the algorithm, showing its capabilities and limits in a real world situation. These experiments are further expanded by changing the outer shape of the robots, modifying the physical interactions by adding a force re-orientation response. This additional effect changes the global dynamics of the swarm, showing Morphological Computation at play. The new dynamics is understood through a physical model of self-alignment, allowing to extend the experimental work in sillico and hint for unseen global effects in swarms of re-orienting robots. Finally, we introduce a model of distributed learning through stochastic ODEs. This model is based on the exchange of internal degrees of freedom that couples to the dynamics of the particles, equivalents in the context of learning as a set of parameters and a controller. It shows similar results in simulation as the real-world experiments and opens up a way to a large-scale analysis of distributed and online learning dynamics
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Marsden, Elliot James. "The collective dynamics of self-propelled particles in confining environments". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/21004.

Texto completo
Resumen
Self-propelled particles are a class of far-from-equilibrium systems which present many complex, emergent features that are not obvious from the microscopic dynamics. Simulations of well-chosen instances of such systems are a powerful yet tractable method of investigating many real-world phenomena. The frequently non-time-reversible interactions of many cases of self-propelled particles with surfaces means that the environment has an impact on large-scale behaviour in a way that would not be true for particles close to thermal equilibrium. This work investigates several examples of such systems, and compares them with experimental results for comparable systems: firstly, the spatial distribution of smooth-swimming mutants of Eschericia Coli within water-in-oil emulsion is investigated, and its dependence on inter-bacterial interactions and the size of water droplets. The nature of bacterial collisions is inferred through data analysis and simulation. Secondly, pattern formation by chemotactic run-and-tumble bacteria due to secretion of a chemoattractant by the bacteria themselves, demonstrating a range of approaches to control the formation of biofilms by bacteria. Finally the dependence of the bulk transport properties of chemotactic self-propelled particles in porous environments, on their detailed dynamics, is probed: how they interact with obstacles, their form of chemotactic response, their ability to actively enhance their rotational noise, and their method of sensing chemical gradients.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Stefferson, Michael W. "Dynamics of Crowded and Active Biological Systems". Thesis, University of Colorado at Boulder, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10823834.

Texto completo
Resumen

Interactions between particles and their environment can alter the dynamics of biological systems. In crowded media like the cell, interactions with obstacles can introduce anomalous subdiffusion. Active matter systems, e.g. , bacterial swarms, are nonequilibrium fluids where interparticle interactions and activity cause collective motion and dynamical phases. In this thesis, I discuss my advances in the fields of crowded media and active matter. For crowded media, I studied the effects of soft obstacles and bound mobility on tracer diffusion using a lattice Monte Carlo model. I characterized how bound motion can minimize the effects of hindered anomalous diffusion and obstacle percolation, which has implications for protein movement and interactions in cells. I extended the analysis of binding and bound motion to study the effects of transport across biofilters like the nuclear pore complex (NPC). Using a minimal model, I made predictions on the selectivity of the NPC in terms of physical parameters. Finally, I looked at active matter systems. Using dynamical density functional theory, I studied the temporal evolution of a self-propelled needle system. I mapped out a dynamical phase diagram and discuss the connection between a banding instability and microscopic interactions.

Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Johannemann, Jonathan. "COAL : a continuous active learning system". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111453.

Texto completo
Resumen
Thesis: M. Fin., Massachusetts Institute of Technology, Sloan School of Management, Master of Finance Program, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 59-60).
In this thesis, our objective is to enable businesses looking to enhance their product by varying its attributes, where effectiveness of the new product is assessed by humans. To achieve this, we mapped the task to a machine learning problem. The solution is two fold: learn a non linear model that can map the attribute space to the human response, which can then be used to make predictions, and an active learning strategy that enables learning this model incrementally. We developed a system called Continuous active learning system (COAL).
by Jonathan Johannemann.
M. Fin.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Fischer, Andreas [Verfasser]. "Self-organization of active matter: The role of interactions / Andreas Fischer". Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2020. http://d-nb.info/1224896599/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Fodor, Etienne. "Tracking nonequilibrium in living matter and self-propelled systems". Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC114.

Texto completo
Resumen
Les systèmes vivants évoluent hors de l'équilibre par l'injection permanente d'énergie fournie par l'ATP. La dynamique des composants intracellulaires, tels que les protéines, organelles et filaments du cytosquelette, est contrôlée par des fluctuations thermiques d'équilibre ainsi que des forces actives aléatoires produites par les moteurs moléculaires. Des traceurs sont injectés dans les cellules pour étudier ces fluctuations. Pour distinguer les fluctuations hors de l'équilibre des effets purement thermiques, des mesures de fluctuations spontanées et de réponse sont combinées. On récapitule théoriquement les fluctuations observées à l'aide d'un modèle phénoménologique. Cela nous permet de quantifier les échelles de temps, de longueur, et d'énergie des fluctuations actives dans trois systèmes expérimentaux : des mélanomes, des ovocytes de souris, et des tissus épithéliaux. Les particules auto-propulsées extraient de l'énergie de leur environnement pour effectuer un mouvement dirigé. Une telle dynamique conduit à une riche phénoménologie qui ne peut être capturée par la physique d'équilibre. Un exemple frappant est la possibilité pour des particules répulsives de subir une séparation de phase. Pour un modèle spécifique d'auto-propulsion, nous explorons à quelle distance de l'équilibre opère la dynamique. Nous quantifions la rupture du renversement temporel, et nous délimitons un régime d'équilibre effectif. L'identification de ce régime est basée sur l'analyse des fluctuations et réponse des particules
Living systems operate far from equilibrium due to the continuous injection of energy provided by ATP supply. The dynamics of the intracellular components, such as proteins, organelles and cytoskeletal filaments, are driven by both thermal equilibrium fluctuations, and active stochastic forces generated by the molecular motors. Tracer particles are injected in living cens to study these fluctuations. To sort out genuine nonequilibrium fluctuations from purely thermal effects, measurements of spontaneous tracer fluctuations and of response are combined. We theoretically rationalize the observed fluctuations with a phenomenological model. This model, in turn, allows us to quantify the time, length and energy scales of the active fluctuations in three different experimental systems: living melanoma cells, living mouse oocytes, and epithelial tissues. Self-propelled particles are able to extract energy from their environment to perform a directed motion. Such a dynamics lead to a rich phenomenology that cannot be accounted for by equilibrium physics arguments. A striking example is the possibility for repulsive particles to undergo a phase separation, as reported in both experimental and numerical realizations. On a specific model of self-propulsion, we explore how far from equilibrium the dynamics operate. We quantify the breakdown of the irreversibility of the dynamics, and we delineate a bona fide effective equilibrium regime. Our insight into this regime is based on the analysis of fluctuations and response of the particles
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Cohen, Jack Andrew. "Active colloids and polymer translocation". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e8fd2e5d-f96f-4f75-8be8-fc506155aa0f.

Texto completo
Resumen
This thesis considers two areas of research in non-equilibrium soft matter at the mesoscale. In the first part we introduce active colloids in the context of active matter and focus on the particular case of phoretic colloids. The general theory of phoresis is presented along with an expression for the phoretic velocity of a colloid and its rotational diffusion in two and three dimensions. We introduce a model for thermally active colloids that absorb light and emit heat and propel through thermophoresis. Using this model we develop the equations of motion for their collective dynamics and consider excluded volume through a lattice gas formalism. Solutions to the thermoattractive collective dynamics are studied in one dimension analytically and numerically. A few numerical results are presented for the collective dynamics in two dimensions. We simulate an unconfined system of thermally active colloids under directed illumination with simple projection based geometric optics. This system self-organises into a comet-like swarm and exhibits a wide range of non- equilibrium phenomena. In the second part we review the background of polymer translocation, including key experiments, theoretical progress and simulation studies. We present, discuss and use a common model to investigate the potential of patterned nanopores for stochastic sensing and identification of polynucleotides and other heteropolymers. Three pore patterns are characterised in terms of the response of a homopolymer with varying attractive affinity. This is extended to simple periodic block co-polymer heterostructures and a model device is proposed and demonstrated with two stochastic sensing algorithms. We find that mul- tiple sequential measurements of the translocation time is sufficient for identification with high accuracy. Motivated by fluctuating biological channels and the prospect of frequency based selectivity we investigate the response of a homopolymer through a pore that has a time dependent geometry. We show that a time dependent mobility can capture many features of the frequency response.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Gonzalez, Ibon Santiago. "DNA programmed assembly of active matter at the micro and nano scales". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:8cc298ba-d35c-4c58-8893-b1f2c9d6c65c.

Texto completo
Resumen
Small devices capable of self-propulsion have potential application in areas of nanoscience where autonomous locomotion and programmability are needed. The specific base-pairing interactions that arise from DNA hybridisation permit the programmed assembly of matter and also the creation of controllable dynamical systems. The aim of this thesis is to use the tools of DNA nanotechnology to design synthetic active matter at the micro and nano scales. In the first section, DNA was used as an active medium capable of transporting information faster than diffusion in the form of chemical waves. DNA waves were generated experimentally using a DNA autocatalytic reaction in a microfluidic channel. The propagation velocity of DNA chemical waves was slowed down by creating concentration gradients that changed the reaction kinetics in space. The second section details the synthesis of chemically-propelled particles and the use of DNA as a 'programmable glue' to mediate their interactions. Janus micromotors were fabricated by physical vapour deposition and a wet-chemical approach was demonstrated to synthesise asymmetrical catalytic Pt-Au nanoparticles that function as nanomotors. Dynamic light scattering measurements showed nanomotor activity that depends on H2O2 concentration, consistent with chemical propulsion. Gold nanoparticles/Origami hybrids were assembled in 2D lattices of different symmetries arranged by DNA linkers. The third section details the design process and synthesis of nanomotors using DNA as a structural scaffold. 3D DNA Origami rectangular prisms were functionalised site-specifically with bioconjugated catalysts, i.e. Pt nanoparticles and catalase. Enzymatic nanomotors were also conjugated to various cargoes and their motor activity was demonstrated by Fluorescence Correlation Spectroscopy. In the final section, control mechanisms for autonomous nanomotors are studied, which includes the conformational change of DNA aptamers in response to chemical signals, as well as a design for an adaptive dynamical system based on DNA/enzyme reaction networks.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Hubrich, Hanna [Verfasser]. "Active Matter in Confined Geometries - Biophysics of Artificial Minimal Cortices / Hanna Hubrich". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1224100298/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

James, Martin [Verfasser]. "Turbulence and pattern formation in continuum models for active matter / Martin James". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1225555973/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Balin, Andrew. "Statistical mechanics of colloids and active matter in and out of equilibrium". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:2941a082-82ca-400b-ae6b-7c22e75cc90c.

Texto completo
Resumen
Thermal and viscous forces compete for dominance at the microscopic length-scales which govern the behaviour of many soft or biological systems. We study three systems of increasing complexity with the central goal of understanding the statistical or hydrodynamic nature of their mechanics. First we study experiments that have been conducted on ferromagnetic colloidal rods. At equilibrium, the magnetically pinned rod is observed to randomly flip between two orientational states, which our theoretical analysis shows is due to a competition between entropic and Hamiltonian forces. We show analytically how entropic forces can arise by considering the coupling between observed and unobserved variables of a system. Experiments in which a rod is driven out of equilibrium by a rotating field display three phases of steady-state behaviour as a function of driving frequency. Using Brownian dynamics simulations we match the lower critical frequency to the experimentally obtained values, showing that thermal fluctuations play an important role in this regime and propose a simple argument to demonstrate that hydrodynamic interactions between the substrate and rod affect the upper critical frequency. We then turn to the biophysical topic of cell locomotion in viscoelastic media. In order to study how bacterial flagella interact with similarly-sized polymers in their environment, we construct a Stokesian dynamics model of a helical filament and bead--spring polymer. Simulating their interaction first for a pinned--rotating helix, then for a swimming helix, we demonstrate that large polymers become hydrodynamically entrained by the flagellum and coil around it, causing both pinned and swimming flagella to expend more work. For the swimming helix, this results in a reduction of swimming speed on average. Finally, we consider an active nematic fluid confined to a channel and show that the inclusion of a passive colloid induces a global state of coherent flow maintained by the intrinsic activity of the system. This flow is persistent, and transports the colloid with it along the channel. By this mechanism, a passive colloid is able to spontaneously induce its own transport through an otherwise quiescent fluid.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Katuri, Jaideep. "Guiding active particles through surface interactions". Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663989.

Texto completo
Resumen
Living organisms and systems are continually converting energy, either internally stored or transduced from their surroundings, into motion. This activity and the resulting self-propulsion constantly push these biological systems out of thermal equilibrium. A number of exotic phenomenon result from the intrinsic non-equilibrium nature of these living systems, that are not accessible in a system at thermal equilibrium. In recent years, these ubiquitous non-equilibrium systems have come to be classified as active matter. Active matter, by definition, refers to systems composed of active units, each capable of converting ambient or stored energy into systematic movement. Examples range from the sub-micrometer scale, with microtubules associated with motor proteins in the cytoplasm, to the micrometer length scales of swimming bacteria, and the meter-length scales of greater familiarity, such as that of fish and birds. There are two common themes that run through all these active matter systems. The first is the emergence of correlated collective phenomenon through particle-particle interactions as exemplified in flocking of birds, swarming of bacteria and crystallization of self-propelled particles. And the second is the ability of the active units to interact with their surroundings through self-propulsion. Common examples of this include chemotaxis and rheotaxis, observed in many biological systems. In this thesis, I have focussed on studying the ability of artificial active matter systems to respond to their local environment. As a model active matter system, we use colloidal active particles, that propel due to self-diffusiophoresis. These particles coated with two different materials on each half are referred to as Janus particles. In a solution of H2O2, one of the sides has catalytic properties (Pt), while the other half remains inert (SiO2). This creates a concentration gradient of the reaction product along the surface of the particle and induces a phoretic slip, which propels the particle. We study the dynamics of these self-phoretic particles close to solid surfaces. The particles interact with their surroundings via hydrodynamic and phoretic effects and we observe that when confined closed to a surface, a strong alignment interaction comes into play. This effect can be used to guide micron sized active particles along predetermined pathways. We then exploit this alignment interaction to design micropatterned ratchets capable of generating a strong directional flow of active particles. A different geometry of the same system can also be used to accumulate active particles in confined areas. Finally, we study the influence of an applied external shear flow on the dynamics of active particles near surfaces. We find that a strong directional response emerges for the active particles in the direction perpendicular to the flow direction leading to the cross-stream migration of active particles. This response is dependent on the applied shear flow and the propulsion velocity of the particle, potentially opening up a possibility to sort particles of different activities based on their response to shear flows. Overall, our results indicate that active particles can have a strong directional response in certain environments allowing us to engineer ways of guiding them.
Los organismos y sistemas vivos convierten energía almacenada internamente o derivada de sus alrededores en movimiento de forma continua. Esta actividad puede causar una constante auto-propulsión que lleva a estos sistemas a un estado fuera de equilibrio térmico. Gracias a esto, aparecen un gran número de fenómenos exóticos que no son accesibles para un sistema que se encuentra en equilibrio térmico. En los últimos años se ha clasificado a estos sistemas de no equilibro como “material activa”. La materia activa, por definición, incluye los sistemas compuestos de unidades activas, cada una de ellas capaz de convertir la energía almacenada o del entorno en movimiento sistemático. Existen varios ejemplos que van desde la escala sub-micrométrica, donde podemos encontrar a los microtúbulos asociados a proteínas motoras en el citoplasma, a las grandes escalas, donde se encuentran sistemas más familiares como peces o pájaros, pasando por la escala micrométrica, donde nadan las bacterias. Podemos diferenciar dos temas principales que se manifiestan en todos estos sistemas de materia activa. El primero es la aparición de fenómenos colectivos correlacionados a través de interacciones partícula-partícula, como ocurre en bandadas de pájaros, enjambres bacterianos y la cristalización de partículas auto-propulsadas. El segundo es la capacidad de estas unidades activas de interaccionar con sus alrededores a través del fenómeno de la auto-propulsión, por ejemplo, a través de quimiotaxia o reotaxia, como se puede observar en muchos sistemas biológicos y que ya han sido reportados en varios estudios. En esta tesis, me he enfocado en el estudio de este último tema principal: la interacción de partículas activas con su entorno local. Como modelo de sistema de materia activa, usamos partículas activas coloidales que se propulsan gracias al fenómeno de auto-difusioforesis. Estas partículas están recubiertas por dos materiales diferentes en cada una de sus caras, y son comúnmente llamadas “partículas Janus”. Una de sus caras está recubierta con Pt, material que cataliza la descomposición de H2O2, mientras que la otra cara está recubierta de un material inerte (SiO2). En una solución de H2O2, la reacción que ocurre en la parte catalítica produce un gradiente de concentración de producto a lo largo de la superficie de la partícula e induce un deslizamiento forético que la propulsa. En esta tesis se ha estudiado la dinámica de estas partículas "autoforéticas" cerca de superficies sólidas. De manera natural, las partículas interaccionan con su alrededor debido a los efectos foréticos e hidrodinámicos. Cuando estas partículas se hayan confinadas cerca de una superficie, observamos que se origina en ellas una fuerte interacción de alineamiento. A partir de ello, consideramos interesante diseñar ratchets micro estampados capaces de generar un flujo direccional de partículas activas. Por otra parte, estudiamos la influencia de aplicar un flujo de cizalla externo en la dinámica de las partículas activas cerca de superficies. A consecuencia del flujo externo, encontramos que en el sistema emerge una respuesta fuertemente direccional para las partículas activas en la dirección perpendicular al flujo provocando una migración "cross-stream" de partículas activas.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Ronceray, Pierre. "Contraction active de réseaux de fibres biologiques". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS154/document.

Texto completo
Resumen
Le fonctionnement des organismes vivants requiert la production deforces à grande échelle, pour des processus biologiques aussi diversque la motilité cellulaire, le développement embryonnaire, lacicatrisation ou encore la contraction musculaire. Dans de telssystèmes, les forces générées à l'échelle moléculaire par des moteursprotéiques sont transmises par des réseaux de fibres désordonnés,menant à des tensions actives à grande échelle. Les propriétésmacroscopiques passives de ces réseaux de fibres sont biencaractérisées. En revanche, ce problème de production de stress pardes unités actives microscopiques n'est pas résolu. Cette Thèseprésente une étude approfondie, par des méthodes théoriques etnumériques, de la transmission de forces dans les réseaux élastiquesde biopolymères. Je montre que la réponse linéaire, à faible force,des réseaux est remarquablement simple : elle est déterminée par laseule la géométrie des unités actives exerçant les forces. Aucontraire, lorsque les forces actives sont suffisamment importantespour provoquer le flambage non-linéaire des fibres, ces forces sontrectifiées par le réseau, et deviennent isotropiquementcontractiles. La contraction émergente qui en résulte est amplifiéepar la transmission de forces non-linéaire à travers le réseau. Cetteamplification du stress macroscopique est renforcée par le caractèredésordonnée du réseau, mais sature lorsque la densité d'unités activesest grande. Nos prédictions sont en accord quantitatifs avec desrésultats expérimentaux sur des tissus reconstitués et des réseauxd'actomyosine in vitro, et apportent un éclairage nouveau surl'influence de l'architecture microscopique des réseaux sur structuredes stress à l'échelle de la cellule et du tissu
Large-scale force generation is essential for biological functionssuch as cell motility, embryonic development, wound healing and musclecontraction. In these processes, forces generated at the molecularlevel by motor proteins are transmitted by disordered fiber networks,resulting in large-scale active stresses. While fiber networks arewell characterized macroscopically, this stress generation bymicroscopic active units is not well understood. In this Thesis, Ipresent a comprehensive theoretical and numerical study of forcetransmission in elastic fiber networks. I show that the linear,small-force response of the networks is remarkably simple, as themacroscopic active stress depends only on the geometry of theforce-exerting unit. In contrast, as non-linear buckling occurs aroundthese units, local active forces are rectified towards isotropiccontraction, making the local geometry of force exertion irrelevant.This emergent contractility is amplified by non-linear forcetransmission through the network. This stress amplification isreinforced by the networks' disordered nature, but saturates for highdensities of active units. Our predictions are quantitativelyconsistent with experiments on reconstituted tissues and actomyosinnetworks, and that they shed light on the role of the networkmicrostructure in shaping active stresses in cells and tissue
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Teeffelen, Sven van [Verfasser]. "Active and passive soft matter: crystal growth, confinement, and swimming / Sven van Teeffelen". Aachen : Shaker, 2009. http://d-nb.info/1162789883/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Tarama, Mitsusuke. "Dynamics of active deformable particle - Two types of active spinning motions and dynamics in external flow field -". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199091.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Dell'Arciprete, Dario. "Physics of bacterial microcolonies". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/23418.

Texto completo
Resumen
The growth of bacterial colonies is a very ubiquitous phenomenon occurring in nature and observed in the laboratories. However, there is a limited knowledge on how at the microscopic level these colonies develop and the individual cells spatially organize. In this thesis, we experimentally investigate the physics of growing microcolonies at the level of the individual Escherichia coli (E. coli ) cells, focussing on the order-disorder evolution and the understanding of it in the context of active matter. Bacterial cells are indeed constantly transducing energy from the environment to move and grow, therefore they behave as active microscopic units, defining an inherently far from equilibrium system. In Part I, we present a brief summary of passive liquid crystals that provide us with some basic concepts and tools for investigating the bacterial microcolony evolution. Then an overview of the biology of E. coli cell is given, both as part of multicellular structures (biofilm) and as individuals. Active matter is then discussed along with some examples of active nematics. This first part ends with the materials and methods used in the experiments and analysis. In Part II, we provide our experimental results on the study of growing bacterial microcolonies as active nematics. We describe the way a bacterial microcolony evolves from the first mother cell into a layer of hundreds of cells, and we study the global and local orientational order. We find that a transition from an anisotropic to an isotropic phase occurs as the colony increases and that instabilities and topological defects develop, in analogy to the case of an active nematic. We also compare the real system with simulated ones by investigating (i ) the case of equilibrated configurations with respect to experimental nonequilibrium ones, and (ii ) long-time behaviour of nonequilibrium analogues. In Part III, we discuss the buckling of bacterial microcolonies, that is, the transition from a 2D layer of cells to a 3D structure. We investigate the link between the buckling event and the presence of topological defects in the nematic map of the bacterial microcolony, finding that the buckling sites tend to be closer to topological defects with a negative charge. Later, we present some results of buckling in microcolonies composed of mutants lacking some appendages that play a role in the motion in and attachment to the surrounding environment, finding that buckling occurs at earlier times in the case of these mutants than the wild type. The aim of this work is to show that a growing bacterial microcolony is an interesting model of active matter to experiment on, and that the investigation tools developed for the study of liquid crystals can be useful for describing the evolution of these living systems in mechanistic terms, and for improving the current understanding of nonequilibrium phenomena.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Bain, Nicolas. "Hydrodynamics of polarized crowds : experiments and theory". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN078/document.

Texto completo
Resumen
Modéliser le mouvement des foules humaines est essentiel pour des situations aussi diverses que la prévention de risque dans les lieux publics, la planification d’évènements ou la création d’animations visuelles réalistes. Cependant, la difficulté de mener des expériences quantitatives limite notre compréhension de la dynamique des piétons, et le manque de mesures de référence rend impossible une comparaison poussée des modèles existants. Cette thèse tente d’augmenter notre compréhension des foules humaines par deux approches distinctes. Dans un premier temps, nous avons conduit une étude numérique et théorique pour étudier formation de lignes au sein de flux bidirectionnels d'agents motiles. Nous avons montré qu’une transition de phase critique du second ordre séparait un état mélangé d’un état constitué de lignes géantes le long desquelles se déplacent les agents visants une même direction. Cette séparation est caractéristique des systèmes actifs. Une approche hydrodynamique nous a ensuite permis de prouver que les phases mélangées sont aussi algébriquement corrélées dans la direction longitudinale. Nous avons expliqué et montré que ces fortes corrélations sont génériques de tous systèmes de flux bidirectionnels, qu’ils soient constitués de particules forcées ou de particules actives. Dans un second temps, nous avons mené une campagne expérimentale de grande envergure afin d’établir une expérience de référence des foules humaines. Nous avons pour cela choisi un système modèle, la zone d’attente de marathons. Dans ces foules de dizaines de milliers d’individus, nous avons quantitativement établi que les fluctuations de vitesse se propagent sur de grandes échelles, alors que les variations d’orientation s’évanouissent en quelques secondes. Grâce à ces mesures, nous avons construit une théorie prédictive hydrodynamique des foules polarisées
Modelling crowd motion is central to situations as diverse as risk prevention in mass events and visual effects rendering in the motion picture industry. The difficulty to perform quantitative measurements in model experiments, and the lack of reference experimental system, have however strongly limited our ability to model and control pedestrian flows. The aim of this thesis is to strengthen our understanding of human crowds, following two distinct approaches.First, we designed a numerical model to study the lane formation process among bidirectional flows of motile particles. We first evidenced the existence of two distinct phases: one fully laned and one homogeneously mixed, separated by a critical phase transition, unique to active systems. We then showed with a hydrodynamic approach that the mixed phase is algebraically correlated in the direction of the flow. We elucidated the origin of these strong correlations and proved that they were a universal feature of any system of oppositely moving particles, active of passive.Second, we conducted a substantial experimental campaign to establish a model experiment of human crowds. For that purpose we performed systematic measurements on crowds composed of tens of thousands of road-race participants in start corrals, a geometrically simple setup. We established that speed information propagates through polarized crowds over system spanning scales, while orientational information is lost in a few seconds. Building on these observations, we laid out a hydrodynamic theory of polarized crowds and demonstrated its predictive power
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Heuermann, Geertje [Verfasser] y J. [Akademischer Betreuer] Blümer. "Active Shielding for Future Large-Scale Dark Matter Experiments / Geertje Heuermann. Betreuer: J. Blümer". Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1095665391/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

McCabe, Darren P. M. "Spatial location of active soil bacteria and their association with soil organic matter fractions". Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559246.

Texto completo
Resumen
The heterogeneous maze of water and gas filled pores within the soil forms the habitat for the diverse bacterial component of the soil biota. These microorganisms play an essential role in soil processes, but the specificity of their location and that of their associated substrates within these pores remains to be revealed. This research tested a novel approach to assess the contribution of pore neck size to bacterial diversity in soil, using soil aggregates obtained at increasing depths from a rhizotron under the perennial bioenergy crop Miscanthus x giganteus. The nucleotide analogue bromodeoxyuridine (BrdU) was added to soil aggregates using a model that relates the neck diameter of water-filled pores to the soil water matric potential. The BrdU labels the DNA of actively dividing cells within contrasting pore size ranges which can then be isolated through an optimised procedure. A second experiment assayed for soil- and plant-derived enzymes as indicators for root/rhizosphere activity and substrates present across the course of a growing season. Thirdly, the soil carbon was physically fractionated to investigate soil organic matter dynamics on a seasonal scale, and the potential for Miscanthus to accumulate soil carbon on an annual scale. The results provide the first direct evidence that distinct active bacterial communities form within soil pore classes. Further, communities within small pores (-1 - 30 urn) were more diverse than in large pores (30 - 3000 urn). There was marked seasonal variation in both soil enzyme activities and soil light fractions. The soil under Miscanthus was found to be more porous with more accumulated carbon then a comparable arable soil. In summary, the project emphasises the importance of using an integrated multidisciplinary approach to advance our understanding of soil processes on a micro scale so that we can understand and potentially improve soil functioning at the field scale.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Alaimo, Francesco [Verfasser], Axel [Gutachter] Voigt y Igor [Gutachter] Aronson. "Phase Field Crystal Modeling of Active Matter / Francesco Alaimo ; Gutachter: Axel Voigt, Igor Aronson". Dresden : Technische Universität Dresden, 2019. http://d-nb.info/1226900887/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Choi, Mi Sun. "Self-Efficacy and Team Leader Equity Matter: A Study of Active Aging at Work". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555608990174517.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Chen, Hongshi. "Contribution to Active Probe for SNOM and Nanoscale Light-matter Interaction based on Photopolymerization". Electronic Thesis or Diss., Troyes, 2022. http://www.theses.fr/2022TROY0007.

Texto completo
Resumen
La microscopie optique en champ proche à balayage (SNOM) est une technologie d'imagerie optique à haute résolution. L'information associée aux hautes fréquences spatiales du champ proche est associée à une haute résolution spatiale, permettant de dépasser la limite de diffraction. Développer une sonde optique locale efficace reste un sujet clé d'actualité qui est abordé depuis longtemps. La thèse porte sur le développement d'une sonde en champ proche active basée sur une pointe polymère intégrée à l'extrémité d'une fibre optique. Nous avons polymérisé une pointe en polymère sur la surface de l'extrémité de la fibre. Pour le balayage, les forces locales de cisaillement détectées à l’aide d’un micro diapason sur lequel est collée la sonde sont utilisées pour contrôler la distance sonde-échantillon. Après fonctionnalisation de surface de la sonde polymère, quelques nano-émetteurs ont été attachés sur l'extrémité de la sonde, pour obtenir une sonde active. Les nano-émetteurs peuvent servir de source lumineuse locale pour la sonde active. La stratégie d’intégration de nano-emetteurs développée a été utilisée sur des nanocubes d'or sur substrat, pour concevoir des nano-émetteurs de plasmons hybrides sensibles à la polarisation. Nous avons également étendu ces nano-émetteurs hybrides au régime de photon unique. Enfin, la sonde active a été testée sur deux types d'échantillons : des nanofils d'argent et des nanocubes d'or. En utilisant notre nouvelle sonde active, nous avons collecté des informations de champ proche pour ces nanostructures et dépassé la limite de diffraction
Scanning Near-field Optical Microscope (SNOM) is a technology for high resolution optical imaging. The high spatial frequency information from the near-field is associated to high spatial resolution, allowing one to break the diffraction limit. The used local probe is still a key topical issue that has been addressed for long. The thesis deals with the development of an active near-field probe based on a polymer tip integrated at the extremity of an optical fiber. We polymerized polymer tip on the surface of the fiber end as a scanning optical probe. Shear-force method with micro tuning fork is used for controlling the probe-sample distance. After surface functionalization of the polymer probe, a few nano-emitters have been attached on the probe extremity, to obtain an active probe. Upon excitation, the nano-emitters can act as local light source for the active probe. Besides, while the development of such active hybrid probes turned out to be challenging, the developed strategy of attachment has been used on gold nanocubes on substrate, to create polarization-sensitive hybrid plasmon nano-emitters. We also extended this hybrid nano-emitters to single photon regime. Finally, the active probe was tested on two kinds of samples: silver nanowires and gold nanocubes. By using our new active probe, we obtained near-field information for those nanostructures and broke the diffraction limit
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Djafer-Cherif, Ilyas. "Descriptions continues et stochastiques de la matière active". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS216/document.

Texto completo
Resumen
Le but de cette thèse est d'étudier des moodèles simples d'agents "auto-propulsés": capables de générer du mouvement en consommant de l'énergie provenant de leur environnement, sans forçage externe. Deux modèles de ce type ont été étudiés lors de cette thèse:-Dans un premier temps un modèle de type "Vicsek" a été étudié, c'est à dire que les particules représentées par un couple (position,vitesse) ont une évolution régie par des règles simples d'alignement et d'auto-propulsion à vitesse constante. Ici, l'alignement est nématique: les particlules s'alignent selon leur grand axe, au contraire d'un alignement polaire il se fait indiféremment tête à queue ou tête à tête. Par rapport aux précédents modèles de ce type la première nouveauté est l'introduction d'une pseudo répulsion (dans l'esprit Vicsek, modélisée par un terme de type couple) donnant une extension spatiale à ces particules. La seconde nouveauté est la présence d'un "taux de retournement" qui rend compte du temps de persistence de la direction de l'auto-propulsion. Dans cette partie nous décrivons divers diagrammes de phases de ce nouveau modèle qui montrent de nouvelles phases non répertoriées précédemment: les arches mais aussi des bandes "smectiques", quelques propriétés de ces structures ont été mesurées. Des équations hydrodynamiques obtenues via la méthode "Boltzmann-Ginzburg-Landau" ayant par ailleurs été dérivées nous effectuons une comparaison: la plupart des phases ainsi que certaines de leurs propriétés sont retrouvés dans le modèle hydrodynamique.-Dans un second temps, nous étudions la bactérie Neisseria Meningitidis qui présente la particularité de générer des "pili", filaments de plusieurs micromètres de long. En dépolymérisant ces structures, à vitesse constantes (~1 µm/s), elle est capable de en générer des forces gigantesques pour le vivant (~100 pN). Cette bactérie a tendance à former des aggrégats sphériques, présentant toutes les propriétés d'un liquide, pour coloniser l'organisme de l'hôte.Des mesures de viscosité et de tension de surface de ces aggrégats ont montré le rôle crucial du nombre de pili. Fort de ces constats nous avons bati un modèle microscopique dont la particularité est l'introduction de potentiels stochastiquement attractifs, c'est à dire que les particles transitent entre un état attractif et un état diffusif. Cette partie retranscrit l'évolution du modèle au cours du temps. Nous avons pu reproduire certaines propriétés des aggrégats, nous avons notamment mis en évidence une variation de la diffusion entre le centre et le bord des aggrégats qui recoupe les données expérimentales
This thesis purpose is to study simple "self-propelled" agents models: they are able to generate motion by consumming energy comming from their environment, without external forcing. Two models of that kind have been studied:-In the first part a Vicsek-style model has been studied, that is we particles are modeled by a couple (position,velocity) which evolution is dictated by simple rules of alignment and self-propulsion at constant speed. Here the alignment is nematic particles align along their long axis and alignment is not polar, contrarily to a polar alignment particles don't discriminate between head and tail . Compared to previous models of this type, the first novelty is the introduction of a pseudo-repulsion (in the Vicsek-spirit, modelized by a torque-like term) providing spatial extension to these particles. The second addition is a flipping rate which renders the persistence time of the direction of self-propulsion. In this part we describe several phase diagrams of this new model which show new phases not previously classified: arches but also "smectic" bands, some propreties of these structures have been measured. Hydrodynamic equations from the "Boltzmann-Ginzburg-Landau" method have been also developped, comparisons are performed: the hydrodynamic model recovers most phases and some of their propreties.-In the second part we study Neisseria Meningitidis, a bacteria which particularity is to generate pili: filamentous structures several micrometers long. By depolymerizing these structures at constant speed (~1µm/s), it is able to generate gigantic forces for the living word (~ 100pN). This bacteria has a tendancy to form spherical aggregates, showing all propreties of a liquid, in order to colonize the host organism. Viscosity and surface tension measure of these aggregates have shown the crucial role of the pili number. Using these data we've built a microscopic model which particularity is the presence of a stochastically attractive potential, that is to say that particles are transiting between an attractive state and a diffusive one. This part relates the model evolution in time. We've ben able to reproduce some aggregate propreties, in particular we've highlighted a variation of the diffusion between aggregate center and edges which fits experimental data
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Geyer, Delphine. "Du mouvement au blocage collectif dans des assemblées de rouleurs colloïdaux : hydrodynamique et solidification des liquides polaires actifs". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN026/document.

Texto completo
Resumen
Des mouvements collectifs dirigés émergent dans des systèmes très variés, depuis les assemblées synthétiques de grains vibrés jusqu'aux nuées d'oiseaux dans la nature. En essayant de comprendre le caractère générique de ces comportements dynamiques collectifs, les physiciens ont décrit les populations d'individus motiles comme des matériaux ordonnés.Dans cette thèse, nous réalisons expérimentalement des troupeaux synthétiques en laboratoire et nous explorons leurs propriétés hydrodynamiques.Nous tirons avantage du mécanisme d’électro rotation de Quincke pour motoriser des millions de colloïdes. Ces rouleurs de Quincke sont capables de s'auto-organiser pour former un troupeau appelé liquide polaire où toutes les particules se déplacent en moyenne dans la même direction.Nous montrons que la dynamique de ce liquide polaire est très bien décrite par des prédictions théoriques laissées sans preuves expérimentales depuis vingt-cinq ans. En particulier,nous démontrons que deux modes sonores s'y propagent et nous montrons que l’étude de leur spectre fournit une méthode non invasive pour mesurer ses constantes hydrodynamiques.Finalement, nous montrons que le mouvement dirigé peut être supprimé collectivement dans un troupeau dense. Un solide actif peut nucléer et se propager à contre-courant dans le liquide polaire. Nous établissons que cette solidification est une transition du premier ordre et qu'il s'agit de la première démonstration expérimentale complète d'une séparation de phase induite par la motilité des particules actives (aussi appelée MIPS)
Spontaneous collective motion arises in many different systems, from assembly of synthetic shaken grains to living bird flocks. In order to understand the generic features of those collective behaviours, physisicts describe the flocks of motile units as ordered materials. In this thesis we study experimentally the dynamics of synthetic flocks and explore their hydrodynamic properties. We take advantage of the Quincke mechanism to motorize millions of colloids. Those Quincke rollers self-organize into a polar liquid, where all the particles, on average flow in the same direction. We provide the first experimental proof that the dynamics of polar liquids is well described by a theoretical prediction established more than twenty-five years ago. In particular, we demonstrate that two sound modes propagate along all directions of the fluid and we design a non invasive spectroscopic method to measure its hydrodynamics constants.Finally, we show that collective motion can be arrested in a dense flock. An active solid can nucleate, grow and propagate in a polar liquid. We establish that this solidification is a first order phase transition and demonstrate that the formation of this active solid is the first experimental proof of a complete motility induced phase separation of active particles (also known as MIPS)
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Theurkauff, Isaac. "Collective Behavior of active colloids". Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10251/document.

Texto completo
Resumen
Nous étudions le comportement collectif d'une assemblée de colloïdes Janus, des sphères d'or de 1µm dont une moitié est recouverte de platine. Lorsqu'ils sont immergés dans une solution d'eau oxygénée, ils se déplacent à des vitesses de l'ordre de 5µm/s, contrôlable par la concentration en peroxyde. Individuellement, ces colloïdes suivent une marche aléatoire persistante ; Ils interagissent par effets phorétiques, formant des clusters dynamiques de quelques dizaines de colloïdes. Ces clusters, mobiles, échangent continuellement des colloïdes, se divisent et se fusionnent, formant une phase stationnaire. Nous avons développés ces colloïdes, ainsi qu'un système d'acquisition pour détecter et reconstituer les trajectoires des colloïdes. La taille moyenne des clusters augmente linéairement avec l'activité, définie comme la vitesse moyenne des colloïdes en dehors des clusters. La fonction densité de probabilité de la taille des clusters est une loi de puissance d'exposant -2. Nous quantifions les vitesses de translation et de rotation des clusters. Pour réaliser une étude thermodynamique, nous réalisons des expériences de sédimentation. Une transition est observée, entre une phase peu dense, un gaz parfait, dans lequel on mesure une température effective, et une phase dense à la dynamique hétérogène. L'équation d'état du système est mesurée, et une forme analytique heuristique est proposée
We study the collective behavior of an assembly of Janus Colloids. These are 1µm gold colloids with one half coated in platinum. When immersed in a peroxide bath, they self-propel, owing to diffusiophoresis and electrophoresis, moving at velocities of order 5µm/s. The velocity can be tune by adjusting the amount of peroxide in the bath. At the single particle level, the colloids undergo a persistent random walk. When in denser groups, the colloids interact through chemical and steric effects. The combination of these interactions, with the colloids activity, leads to collective effects. A dynamic cluster phase is observed, the formation of motile clusters of colloids, formed of up to 100 colloids. The clusters are in a stationary state, constantly moving, and exchanging colloids, they are also colliding, merging and breaking apart. We developed both the colloids, whose synthesis is described, and a high-throughput acquisition and analysis system. We measure the positions, and reconstruct the trajectories of thousands of colloids for a few minutes. From the trajectories, we extract statistical observables. We show that the sizes of clusters increases linearly as a function of the activity of the colloids. The probability distribution functions of sizes are power laws. As the density increases, a jamming transition is observed. The dense phase heterogeneous dynamics is characterized. We study the transition from the dense phase to a low density assembly with sedimentation experiments. The low density phase behaves as an ideal gas, allowing the definition of an effective temperature. We measure an equation of state for the system, and propose a heuristic collapse
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Navarro, Argemí Eloy. "Hydrodynamic effects on active colloidal suspensions". Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/665006.

Texto completo
Resumen
The goal of this thesis is studying hydrodynamic effects on active colloidal suspensions. Hydrodynamic interaction is propagated through the fluid in which the colloids displace due to the flow they create during their motion. It can lead to the emergence of collective phenomena, such as the self-assembly of more complex structures. Hydrodynamic interactions are not the only present in the system, since other forces may be acting between colloids, or there can be external fields acting on them such as gravity. We present our study for two different systems: magnetic colloids and Janus particles. When applying a circular magnetic field, we can induce a rotation to a particle possessing a magnetic moment. Due to the coupling of the flow with the one created by surrounding particles and with system interfaces, a rotor will eventually self-propel. Two magnetic moments interact with each other through the magnetic dipole-dipole force, which tends to align them into arrays. We study how the balance between hydrodynamic, magnetic and gravitational forces determines the morphology of the structures magnetic colloids can form. Janus particles have two faces with different chemical properties, thus the interaction between them depends on their relative orientation. We study the morphology and order of the structures that can emerge for these particles as a function of the intensity, sign and reach of the interaction between them, as well as the type of flow they create when self-propelling. Methodologically, we have combined the use of far-field theory to draw analytical expressions that have given us qualitative insight on the results we could expect with high-performance computing simulations which have allowed us to extend our study to bigger systems.
En aquesta tesi ens proposem estudiar els efectes hidrodinàmics en suspensions col·loidals actives. La interacció hidrodinàmica es propaga a través del fluid en el que es desplacen els col·loids degut al flux que ells mateixos creen durant el seu moviment, podent donar lloc a l’emergència de fenòmens col·lectius, com l’autoorganització en estructures més complexes. Les interaccions hidrodinàmiques no són les úniques presents en el sistema, ja que pot haver-hi d’altres forces actuant entre els col·loids, o podem considerar l’efecte d’altres camps com la gravetat. Presentem el nostre estudi per a dos sistemes diferents: col·loids magnètics i partícules Janus. En aplicar un camp magnètic circular, es pot induir una rotació a una partícula que posseeixi un moment magnètic. Degut a l’acoplament del flux amb el creat per altres partícules i les parets del sistema, un rotor pot acabar desplaçant-se. Dos moments magnètics interactuen entre ells mitjançant la força dipolar, que afavoreix el seu alineament i la formació de cadenes de col·loids. Estudiem com el balanç entre interaccions hidrodinàmiques, magnètiques i efectes gravitatoris afecta a la morfologia de les estructures que poden formar els col·loids magnètics. Les partícules Janus tenen dues cares amb propietats químiques diferents, quelcom que dóna lloc a una interacció entre elles que depèn de la seva orientació relativa. Estudiem les estructures que poden aparèixer per a aquestes partícules com a funció de la intensitat, signe i abast d’aquesta interacció, així com de la forma del flux que creen en desplaçar-se. Metodològicament, hem combinat expressions analítiques aproximades per tenir una idea qualitativa dels fenòmens que hom pot esperar amb simulacions per ordinador per poder estudiar els fenòmens col·lectius en sistemes de més partícules.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Du, S., Wyk BJ Van, G. Qi y C. Tu. "Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach". Elsevier, 2009. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001363.

Texto completo
Resumen
a b s t r a c t In this paper, a hybrid method using active control and a High Order Differentiator (HOD) methodology is proposed to synchronize chaotic systems. Compared to some traditional active control methods, this new method can synchronize chaotic systems where only output states of the master system are available, i.e. the system is considered a black box. The HOD is used to estimate the derivative information of the master system followed by an active control methodology relying on HOD information. The Qi hyperchaotic system is used to verify the performance of this hybrid method. The proposed method is also compared to some traditional methods. Experimental results show that the proposed method has high synchronization precision and speed and is robust against uncertainties in the master system. The circus implements of the proposed synchronizing scheme are included in this paper. The simulation results show the feasibility of the proposed scheme.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Evans, Larissa Michelle. "Sexual Well-Being in Single, Sexually Active College Females: A Matter of Agency and Openness". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/50941.

Texto completo
Resumen
This study explored multiple predictors of sexual well-being in a sample of 253 single, sexually active undergraduate females at a public Mid-Atlantic university. Several factors were identified from past research that might impact sexual well-being: casual sex, sexual agency, sexual attitudes, and sexual desire. Of the four factors, only sexual agency and sexual attitudes were found as significant predictors of sexual well-being. The results suggest that -- of single, sexually active undergraduate females -- those with a greater sense of agency and choice in their sexual interactions and those who maintain more open attitudes toward casual sex have a higher level of sexual well-being. Agency and openness may be important factors in the development of sexual well-being for young women. Limitations of the study, as well as implications for future research and psychoeducational and therapeutic interventions, are addressed.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Putzig, Elias. "An Exploration of the Phases and Structure Formation in Active Nematic Materials Using an Overdamped Continuum Theory". Thesis, Brandeis University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10620560.

Texto completo
Resumen

Active nematics are a class of nonequilibrium systems which have received much attention in the form of continuum models in recent years. For the dense, highly ordered case which is of particular interest, these models focus almost exclusively on suspensions of active particles in which the flow of the medium plays a key role in the dynamical equations. Many active nematics, however, reside at an interface or on a surface where friction excludes the effects of long-range flow. In the following pages we shall construct a general model which describes these systems with overdamped dynamical equations. Through numerical and analytical investigation we detail how many of the striking nonequilibrium behaviors of active nematics arise in such systems.

We shall first discuss how the activity in these systems gives rise to an instability in the nematic ordered state. This instability leads to phase-separation in which bands of ordered active nematic are interspersed with bands of the disordered phase. We expose the factors which control the density contrast and the stability of these bands through numerical investigation.

We then turn to the highly ordered phase of active nematic materials, in which striking nonequilibrium behaviors such as the spontaneous formation, self-propulsion, and ordering of charge-half defects occurs. We extend the overdamped model of an active nematic to describe these behaviors by including the advection of the director by the active forces in the dynamical equations. We find a new instability in the ordered state which gives rise to defect formation, as well as an analog of the instability which is seen in models of active nematic suspensions. Through numerical investigations we expose a rich phenomenology in the neighborhood of this new instability. The phenomenology includes a state in which the orientations of motile, transient defects form long-range order. This is the first continuum model to contain such a state, and we compare the behavior seen here with similar states seen in the experiments and simulations of Stephen DeCamp and Gabriel Redner et. al. [1]

Finally, we propose the measurement of defect shape as a mechanism for the comparison between continuum theories of active nematics and the experimental and simulated realiza- tions of these systems. We present a method for making these measurements which allows for averaging and statistical analysis, and use this method to determine how the shapes of defects depend on the parameters of our continuum theory. We then compare these with the shapes of defects which we measure in the experiments and simulations mentioned above in order to place these systems in the parameter space of our model. It is our hope that this mechanism for comparison between models and realizations of active nematics will provide a key to pairing the two more closely.

Los estilos APA, Harvard, Vancouver, ISO, etc.
48

RAVAZZANO, LINDA. "STRUCTURE, DYNAMICS AND PHASE TRANSITIONS OF BIOLOGICAL MATTER". Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/926571.

Texto completo
Resumen
The work presented in this PhD Thesis aims to investigate, with the methods of soft matter physics, systems of biological interest. Inspired by the observation of algae, migrating cells and and protein complexes inside the single cell, simple mathematical models have been implemented to obtain computer simulations of complex systems of biological interest and to deepen our understanding on their physical properties. The first part of the work deals with active matter systems, in which each particle is able to self-propel. Active self-rotations are rarely studied in this context, although present in biological systems such as Chlamydomonas reinhardtii algae. We built a simple model for active particles in 2D based on ABPs (Active Brownian Particles) model, accounting for inter-particle interactions and adding an active torque to each particle to simulate the ability of self-rotating. Employing MD simulations, we studied this model system of active rotators in different conditions, to shed light on the role of self- rotation in active matter systems at the jammed-unjammed transition. We then applied our model based on ABPs to the study of interacting active matter invading narrow channels, to investigate the role of single particles properties in determining invasion behavior. The second part of the work deals with nuclear pores, protein complexes inserted in the nuclear envelope of eukaryotic cells, acting as communication gates between nucleus and cytoplasm. Nuclear pores spatial organization and geometric arrangement on the nuclear surface are still poorly understood. Hence we propose the use of tools commonly employed to study the atomic structural and topological features of soft matter, to study nuclear pores spatial organization. Furthermore, to interpret the experimental results, we hypothesize an effective interaction among nuclear pores and implemented it in extensive numerical simulations of octagonal clusters, mimicking typical pore shapes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Toreid, Eivind. "Active Control of Reactive Power in a Modern Electrical Rail Vehicle". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13863.

Texto completo
Resumen
Modern electrical rail vehicles employ four-quadrant voltage source converters, which allow independent control of real and reactive power. This thesis focuses the control of reactive power at the vehicle regarding load flow and stability.Settings for power factor as a function of voltage were proposed in a project fall 2010, aiming to reduce line loss and increase transmission capacity. This thesis is mainly a further investigation of some of the settings proposed.One of the proposed settings for controlling reactive power is found to reduce the load of a rotary converter station in the range of 0-3 %. Total system losses are reduced by 0.21-0.33 %.During traction, the problematic issue regarding stability is found to be speed oscillations of the rotary converter. Controlling reactive power is found to have a limited damping effect on speed oscillations of a rotary converter. Other works have investigated how speed oscillations of the rotary converter can be damped by controlling the real power of the vehicle; the real power control is found to have a clearly better effect than reactive.During no-load operation, the problematic issue regarding stability is found to be oscillations caused by the vehicle and its control system. The vehicle control system and its response to the line voltage may cause instability, especially at long line lengths, regardless of any rotary converter. As reactive power has a significant effect on the line voltage, reactive power may be controlled in a manner increasing the damping of such oscillations significantly.Finally the thesis describes how a simulation model of a modern electrical rail vehicle for stability analysis can be made from the steady state characteristics and the input admittance of the vehicle, without knowing the complete vehicle model.The settings which where proposed and investigated in this project are optimized for a system fed by stiff voltage sources, not by rotary converters, and a more complete optimization for a system fed by rotary converters would be of interest.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Keta, Yann-Edwin. "Emergence of disordered collective motion in dense systems of isotropic self-propelled particles". Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS025.

Texto completo
Resumen
La matière active est une vaste classe de matériaux au sein desquels chaque entité, les particules actives, consomme de l'énergie pour effectuer un mouvement. Ces matériaux sont à l'intersection de plusieurs champs de recherche distincts, tels que la biologie, l'ingénierie et la physique, et ont donc attiré une attention considérable. En raison de leur consommation perpétuelle d'énergie, ces systèmes sont hors de l'équilibre thermodynamique. En conséquence ils exhibent une myriade de phénomènes surprenants qui défient notre conception des phases et dynamiques à l'équilibre. Parmi eux, le mouvement collectif est particulièrement intriguant et excitant sous plusieurs aspects. Premièrement parce qu'il émerge dans des systèmes aux échelles de longueur et de temps distinctes, des ensembles de cellules aux larges foules, troupeaux et essaims, avec cependant des caractéristiques communes. Cela suggère alors une logique universelle derrière dans les mécanismes à l'origine de ces différents comportements collectifs. Deuxièmement parce que certains de ces mouvements ont des signatures communes avec des phénomènes d'équilibre. Bien que ces derniers soient très divers, allant de la transition vitreuse à la turbulence inertielle, ces connections donnent accès à de nombreux outils et concepts afin de caractériser les comportements hors-équilibre. Troisièmement parce que les applications possibles d'une compréhension fine voire du contrôle de ces phénomènes sont d'une grande portée~: traitement de pathologies spécifiques, conception de matériaux intelligents, gestion des foules, etc. Dans cette Thèse, nous nous concentrons sur la matière active dense, où le mouvement des particules individuelles est entravé par des effets d'encombrement, et cherchons à caractériser comment le mouvement collectif émerge de cette compétition. Pour cela nous utilisons un modèle simple en deux dimensions de particules auto-propulsées isotropes, à savoir des particules d'Ornstein-Uhlenbeck, où l'écart à la limite d'équilibre est contrôlée par le temps de persistance des forces de propulsion. En raison de sa simplicité, les phénomènes décrits pour ce modèle ont le potentiel de s'appliquer à une variété de matériaux. Nous cartographions les phases de ce modèle, du régime proche de l'équilibre à petite persistance au régime loin de l'équilibre à grande persistance. Nous concentrons nos efforts sur ce second régime, là où a été récemment montré l'émergence de corrélations de vitesse. Nous démontrons qu'une phase liquide désordonnée existe à très grande persistance, à condition que la polydispersité frustre l'ordre structurel, et que ce liquide exhibe différentes manifestations de mouvement collectif désordonné. D'abord, nous montrons que les systèmes persistants sont dynamiquement arrêtés à grande densité. Dans le voisinage de l'arrêt dynamique, nous trouvons que le liquide affiche des hétérogénéités dynamiques similaires aux systèmes denses à l'équilibre. Nous examinons, dans une limite idéale de persistance infinie, les processus microscopiques menant à ces hétérogénéités. Ensuite, à distance de l'arrêt dynamique, nous montrons que notre modèle exhibe des écoulements d'advection chaotiques, à l'instar des systèmes turbulents. Nous mettons en exergue comment ce comportement spécifique pourrait être universel au sein d'une classe plus large de systèmes actifs s'appuyant sur une compétition entre l'encombrement et le forçage persistant. Enfin, dans des systèmes monodisperses qui exhibent à grande densité un ordre à longue portée, nous décrivons les mécanismes permettant la relaxation structurelle loin de l'équilibre
Active matter is a broad class of materials within which individual entities, the active particles, consume energy in order to perform movement. These materials are at the intersection of many distinct fields of research, such as biology, engineering, and physics, and have thus attracted considerable attention. Because of their perpetual consumption of energy, these systems are out of thermodynamic equilibrium. As a consequence they display a wealth of surprising phenomena which challenge our conception of equilibrium phases and dynamics. Among them, collective motion is particularly intriguing and exciting on multiple grounds. First because it emerges in systems with distinct length and time scales, from collections of cells to large crowds, flocks, and swarms, yet with some common characteristics. This thus suggests some sense of universality in the mechanisms leading to different collective behaviours. Second because parts of these motions display signatures shared with other equilibrium phenomena. While the latter are very diverse, ranging from the glass transition to inertial turbulence, these connections mean that a number of concepts and tools are readily available to describe out-of-equilibrium behaviours. Third because the possible applications of the understanding and control of these phenomena are far-reaching: treatment of specific pathologies, design of intelligent materials, crowd management, etc. In this Thesis, we focus on dense active matter, where the movement of individual particles is hindered by crowding effects, and aim to characterise how this competition leads to emerging collective motion. To this effect we use a simple model of two-dimensional isotropic self-propelled particles, namely active Ornstein-Uhlenbeck particles, where the departure from the equilibrium limit is controlled via the persistence time of propulsion forces. Owing to its simplicity, the phenomena described within this model have the potential to apply to a broad range of materials. We broadly map the phase behaviour of this model, from the equilibrium-like regime at small persistence to the to far-from-equilibrium regime at large persistence. We focus our efforts on the latter regime, where velocity correlations were recently shown to emerge. We demonstrate that a disordered liquid phase exists up to very large persistence, if polydispersity frustrates the ordering of the system, and that this persistent liquid displays various manifestations of disordered collective motion. First, we show that persistent systems are dynamically arrested at large packing fraction. Close to dynamical arrest, we find that the liquid displays dynamical heterogeneity similar to equilibrium dense systems. We investigate, in the idealised limit of infinite persistence, the microscopic processes leading to these heterogeneities. Then, away from dynamical arrest, we show that our model displays chaotic advection flows, as typically shown by turbulent systems. We highlight how this specific behaviour may be universal to a broader class of active systems relying on the competition of crowding and persistent forcing. Finally, in monodisperse systems which display long-range order at large packing fraction, we describe the far-from-equilibrium mechanisms leading to structural relaxation
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía