Literatura académica sobre el tema "Active Malware Analysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Active Malware Analysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Active Malware Analysis"
Joshi, Ankit, Komesh Borkar, Rohit Dhote, Saurabh Raut, Swapnil Thomare, Raghavendra Kulkarni y Sharda Chhabria. "A Machine Learning Technique to Detect Malware". International Journal for Research in Applied Science and Engineering Technology 10, n.º 12 (31 de diciembre de 2022): 188–93. http://dx.doi.org/10.22214/ijraset.2022.47841.
Texto completoMiraglia, Armando y Matteo Casenove. "Fight fire with fire: the ultimate active defence". Information & Computer Security 24, n.º 3 (11 de julio de 2016): 288–96. http://dx.doi.org/10.1108/ics-01-2015-0004.
Texto completoZhang, Hong, Shumin Yang, Guowen Wu, Shigen Shen y Qiying Cao. "Steady-State Availability Evaluation for Heterogeneous Edge Computing-Enabled WSNs with Malware Infections". Mobile Information Systems 2022 (11 de abril de 2022): 1–16. http://dx.doi.org/10.1155/2022/4743605.
Texto completoShatnawi, Ahmed S., Aya Jaradat, Tuqa Bani Yaseen, Eyad Taqieddin, Mahmoud Al-Ayyoub y Dheya Mustafa. "An Android Malware Detection Leveraging Machine Learning". Wireless Communications and Mobile Computing 2022 (6 de mayo de 2022): 1–12. http://dx.doi.org/10.1155/2022/1830201.
Texto completoLondoño, Sebastián, Christian Urcuqui, Manuel Fuentes Amaya, Johan Gómez y Andrés Navarro Cadavid. "SafeCandy: System for security, analysis and validation in Android". Sistemas y Telemática 13, n.º 35 (3 de diciembre de 2015): 89–102. http://dx.doi.org/10.18046/syt.v13i35.2154.
Texto completoSartea, Riccardo, Alessandro Farinelli y Matteo Murari. "SECUR-AMA: Active Malware Analysis Based on Monte Carlo Tree Search for Android Systems". Engineering Applications of Artificial Intelligence 87 (enero de 2020): 103303. http://dx.doi.org/10.1016/j.engappai.2019.103303.
Texto completoO'Callaghan, Derek, Martin Harrigan, Joe Carthy y Pádraig Cunningham. "Network Analysis of Recurring YouTube Spam Campaigns". Proceedings of the International AAAI Conference on Web and Social Media 6, n.º 1 (3 de agosto de 2021): 531–34. http://dx.doi.org/10.1609/icwsm.v6i1.14288.
Texto completoDuraisamy Soundrapandian, Pradeepkumar y Geetha Subbiah. "MULBER: Effective Android Malware Clustering Using Evolutionary Feature Selection and Mahalanobis Distance Metric". Symmetry 14, n.º 10 (21 de octubre de 2022): 2221. http://dx.doi.org/10.3390/sym14102221.
Texto completoNawaz, Umair, Muhammad Aleem y Jerry Chun-Wei Lin. "On the evaluation of android malware detectors against code-obfuscation techniques". PeerJ Computer Science 8 (21 de junio de 2022): e1002. http://dx.doi.org/10.7717/peerj-cs.1002.
Texto completoWu, Xiaojun, Qiying Cao, Juan Jin, Yuanjie Li y Hong Zhang. "Nodes Availability Analysis of NB-IoT Based Heterogeneous Wireless Sensor Networks under Malware Infection". Wireless Communications and Mobile Computing 2019 (3 de enero de 2019): 1–9. http://dx.doi.org/10.1155/2019/4392839.
Texto completoTesis sobre el tema "Active Malware Analysis"
Vermeulen, Japie. "An analysis of fusing advanced malware email protection logs, malware intelligence and active directory attributes as an instrument for threat intelligence". Thesis, Rhodes University, 2018. http://hdl.handle.net/10962/63922.
Texto completoChen, Yi-Ning y 陳怡寧. "Combing Dynamic Passive Analysis and Active Fingerprinting for Effective Bot Malware Detection in Virtualized Environments". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/37410971770711187787.
Texto completo國立臺灣大學
資訊管理學研究所
100
Defeating botnet is the key to secure the Internet. Many cyber crimes are launched by botnets, such as DDoS, spamming and click frauds. Although numerous network-based detection mechanisms are proposed and implemented, they still have some limitations due to their passive nature. Host-based detection agent can perform more precisely in bot detection; however, it’s intrusive and can be aware by the bot. In order to complement current solutions, we propose a mechanism called active bot fingerprinting. By setting certain specific stimulus to a host, we observe whether certain expected behavior is triggered to examine if the host is a bot. Since the virtualized environment is widely used for enterprises to host their service (e.g., private cloud), we propose and implement a bot detection system combining both passive and active detection approach for virtualized environment. The detection result of both passive detection and active detection shows a good detection rate with low false positive rate and low false negative rate.
Capítulos de libros sobre el tema "Active Malware Analysis"
Darki, Ahmad, Chun-Yu Chuang, Michalis Faloutsos, Zhiyun Qian y Heng Yin. "RARE: A Systematic Augmented Router Emulation for Malware Analysis". En Passive and Active Measurement, 60–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76481-8_5.
Texto completoHsiao, Shun-Wen, Yi-Ning Chen, Yeali S. Sun y Meng Chang Chen. "Combining Dynamic Passive Analysis and Active Fingerprinting for Effective Bot Malware Detection in Virtualized Environments". En Network and System Security, 699–706. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38631-2_59.
Texto completoD., Sangeetha, Umamaheswari S. y Rakshana Gopalakrishnan. "Deep Neural Network-Based Android Malware Detection (D-AMD)". En Deep Learning Applications and Intelligent Decision Making in Engineering, 161–75. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-2108-3.ch006.
Texto completoGorment, Nor Zakiah, Ali Selamat y Ondrej Krejcar. "Anti-Obfuscation Techniques: Recent Analysis of Malware Detection". En Frontiers in Artificial Intelligence and Applications. IOS Press, 2022. http://dx.doi.org/10.3233/faia220249.
Texto completoVinod, P., P. R. Rakesh y G. Alphy. "Similarity Measure for Obfuscated Malware Analysis". En Information Security in Diverse Computing Environments, 180–205. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-6158-5.ch010.
Texto completoKumari, Reema y Kavita Sharma. "Cross-Layer Based Intrusion Detection and Prevention for Network". En Handbook of Research on Network Forensics and Analysis Techniques, 38–56. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-4100-4.ch003.
Texto completoActas de conferencias sobre el tema "Active Malware Analysis"
Sartea, Riccardo, Mila Dalla Preda, Alessandro Farinelli, Roberto Giacobazzi y Isabella Mastroeni. "Active Android malware analysis". En the 6th Workshop. New York, New York, USA: ACM Press, 2016. http://dx.doi.org/10.1145/3015135.3015140.
Texto completoSartea, Riccardo y Alessandro Farinelli. "A Monte Carlo Tree Search approach to Active Malware Analysis". En Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/535.
Texto completoHota, Abhilash y Jurgen Schonwalder. "A Bayesian Model Combination based approach to Active Malware Analysis". En 2022 IEEE International Conference on Cyber Security and Resilience (CSR). IEEE, 2022. http://dx.doi.org/10.1109/csr54599.2022.9850338.
Texto completoAbdullah, Muhammed Amin, Yongbin Yu, Jingye Cai, Yakubu Imrana, Nartey Obed Tettey, Daniel Addo, Kwabena Sarpong, Bless Lord Y. Agbley y Benjamin Appiah. "Disparity Analysis Between the Assembly and Byte Malware Samples with Deep Autoencoders". En 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). IEEE, 2022. http://dx.doi.org/10.1109/iccwamtip56608.2022.10016485.
Texto completoYordanov, Petar, Krassimir Petkov, Sasho Yordanov, Nina Klenovska y Ivan Terziiski. "RESEARCH ON THE RISKS IN CYBERSPACE DURING SPORTING EVENTS". En INTERNATIONAL SCIENTIFIC CONGRESS “APPLIED SPORTS SCIENCES”. Scientific Publishing House NSA Press, 2022. http://dx.doi.org/10.37393/icass2022/56.
Texto completo