Literatura académica sobre el tema "Active Brownian Particles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Active Brownian Particles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Active Brownian Particles"
Romanczuk, P., M. Bär, W. Ebeling, B. Lindner y L. Schimansky-Geier. "Active Brownian particles". European Physical Journal Special Topics 202, n.º 1 (marzo de 2012): 1–162. http://dx.doi.org/10.1140/epjst/e2012-01529-y.
Texto completoArkar, Kyaw, Mikhail M. Vasiliev, Oleg F. Petrov, Evgenii A. Kononov y Fedor M. Trukhachev. "Dynamics of Active Brownian Particles in Plasma". Molecules 26, n.º 3 (21 de enero de 2021): 561. http://dx.doi.org/10.3390/molecules26030561.
Texto completoSvetlov, Anton S., Mikhail M. Vasiliev, Evgeniy A. Kononov, Oleg F. Petrov y Fedor M. Trukhachev. "3D Active Brownian Motion of Single Dust Particles Induced by a Laser in a DC Glow Discharge". Molecules 28, n.º 4 (14 de febrero de 2023): 1790. http://dx.doi.org/10.3390/molecules28041790.
Texto completoCugliandolo, Leticia F., Giuseppe Gonnella y Isabella Petrelli. "Effective Temperature in Active Brownian Particles". Fluctuation and Noise Letters 18, n.º 02 (29 de mayo de 2019): 1940008. http://dx.doi.org/10.1142/s021947751940008x.
Texto completoSchimansky-Geier, Lutz, Michaela Mieth, Helge Rosé y Horst Malchow. "Structure formation by active Brownian particles". Physics Letters A 207, n.º 3-4 (octubre de 1995): 140–46. http://dx.doi.org/10.1016/0375-9601(95)00700-d.
Texto completoСергеев, К. С. y K. S. Sergeev. "Dynamics of Ensemble of Active Brownian Particles Controlled by Noise". Mathematical Biology and Bioinformatics 10, n.º 1 (16 de febrero de 2015): 72–87. http://dx.doi.org/10.17537/2015.10.72.
Texto completoDulaney, Austin R. y John F. Brady. "Machine learning for phase behavior in active matter systems". Soft Matter 17, n.º 28 (2021): 6808–16. http://dx.doi.org/10.1039/d1sm00266j.
Texto completoGroßmann, R., L. Schimansky-Geier y P. Romanczuk. "Active Brownian particles with velocity-alignment and active fluctuations". New Journal of Physics 14, n.º 7 (13 de julio de 2012): 073033. http://dx.doi.org/10.1088/1367-2630/14/7/073033.
Texto completoCaprini, Lorenzo, Claudio Maggi y Umberto Marini Bettolo Marconi. "Collective effects in confined active Brownian particles". Journal of Chemical Physics 154, n.º 24 (28 de junio de 2021): 244901. http://dx.doi.org/10.1063/5.0051315.
Texto completoWang, Liya, Xinpeng Xu, Zhigang Li y Tiezheng Qian. "Active Brownian particles simulated in molecular dynamics". Chinese Physics B 29, n.º 9 (septiembre de 2020): 090501. http://dx.doi.org/10.1088/1674-1056/aba60d.
Texto completoTesis sobre el tema "Active Brownian Particles"
Bechinger, Clemens. "Active Brownian motion of asymmetric particles". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-179545.
Texto completoBechinger, Clemens. "Active Brownian motion of asymmetric particles". Diffusion fundamentals 20 (2013) 16, S. 1, 2013. https://ul.qucosa.de/id/qucosa%3A13540.
Texto completoSiebert, Jonathan Tammo [Verfasser]. "Computer simulations of active Brownian particles / Jonathan Tammo Siebert". Mainz : Universitätsbibliothek Mainz, 2018. http://d-nb.info/1173827951/34.
Texto completoWittkowski, Raphael [Verfasser]. "Brownian dynamics of active and passive anisotropic colloidal particles / Raphael Wittkowski". Aachen : Shaker, 2012. http://d-nb.info/1066197733/34.
Texto completoBäuerle, Tobias Doyle [Verfasser]. "Collective phenomena in active Brownian particles with feedback controlled interaction rules / Tobias Doyle Bäuerle". Konstanz : KOPS Universität Konstanz, 2020. http://d-nb.info/1221524798/34.
Texto completoKrinninger, Philip [Verfasser] y Matthias [Akademischer Betreuer] Schmidt. "Effective Equilibrium, Power Functional, and Interface Structure for Phase-Separating Active Brownian Particles / Philip Krinninger ; Betreuer: Matthias Schmidt". Bayreuth : Universität Bayreuth, 2019. http://d-nb.info/1177143070/34.
Texto completoWittkowski, Raphael [Verfasser], Hartmut [Akademischer Betreuer] Löwen, Helmut [Akademischer Betreuer] Brand y Holger [Akademischer Betreuer] Stark. "Brownian dynamics of active and passive anisotropic colloidal particles / Raphael Wittkowski. Gutachter: Helmut Brand ; Holger Stark. Betreuer: Hartmut Löwen". Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2012. http://d-nb.info/1024161064/34.
Texto completoNötel, Jörg. "Active Brownian Particles with alpha Stable Noise in the Angular Dynamics: Non Gaussian Displacements, Adiabatic Eliminations, and Local Searchers". Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19681.
Texto completoActive Brownian particles described by Langevin equations are used to model the behavior of simple biological organisms or artificial objects that are able to perform self propulsion. In this thesis we discuss active particles with constant speed. In the first part, we consider angular driving by white Levy-stable noise and we discuss the mean squared displacement and diffusion coefficients. We derive an overdamped description for those particles that is valid at time scales larger the relaxation time. In order to provide an experimentally accessible property that distinguishes between the considered noise types, we derive an analytical expression for the kurtosis. Afterwards, we consider an Ornstein-Uhlenbeck process driven by Cauchy noise in the angular dynamics of the particle. While, we find normal diffusion with the diffusion coefficient identical to the white noise case we observe a Non-Gaussian displacement at time scales that can be considerable larger than the relaxation time and the time scale provided by the Ornstein-Uhlenbeck process. In order to provide a limit for the time needed for the transition to a Gaussian displacement, we approximate the kurtosis. Afterwards, we lay the foundation for a stochastic model for local search. Local search is concerned with the neighborhood of a given spot called home. We consider an active particle with constant speed and alpha-stable noise in the dynamics of the direction of motion. The deterministic motion will be discussed before considering the noise to be present. An analytical result for the steady state spatial density will be given. We will find an optimal noise strength for the local search and only a weak dependence on the considered noise types. Several extensions to the introduced model will then be considered. One extension includes a distance dependent coupling towards the home and thus the model becomes more general. Another extension concerned with an erroneous understanding by the particle of the direction of the home leads to the result that the return probability to the home depends on the noise type. Finally we consider a group of searchers.
Locatelli, Emanuele. "Dynamical and collective properties of active and passive particles in Single File". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423763.
Texto completoIl moto di particelle in mezzi irregolari, complessi o affollati è un fenomeno comune, dalla scala microscopica a quella macroscopica. Lo si può incontrare tanto in situazioni comuni, come il traffico, quanto in meccanismi biologici, come la riproduzione e la crescita delle cellule, e in importanti processi chimici e tecnologici, come la catalisi di idrocarburi. In molti casi, il trasporto in mezzi confinati o affollati è guidato da elementi 'attivi', cioè unità che consumano energia per sostenere il loro stato di moto. Fra i diversi sistemi soggetti a confinamento, particolare rilevanza è rivestita dalla diffusione di sfere impenetrabili in un canale così stretto da non permettere il passaggio di più di una particella alla volta, conosciuto come diffusione in Single File. La diffusione in Single File è il meccanismo responsabile del trasporto di ioni attraverso la membrana cellulare, della diffusione in materiali micro e nanoporosi ed è stata osservata in molti altri sistemi naturali ed artificiali. Scopo di questa tesi è lo studio su scala mesoscopica di particelle passive (diffusive) o attive (auto-propellenti) in condizioni di Single File, con particolare attenzione all'effetto dell'attività sulla dinamica e sulle proprietà delle particelle nel caso siano presenti condizioni al contorno assorbenti. Gran parte del lavoro è stato svolto nello sviluppo di risultati analitici e numerici nel contesto dei Processi Stocastici. Inoltre, mediante tecniche di manipolazione ottica di singola particella in canali microfluidici, abbiamo ottenuto una eccellente confronto fra dati sperimentali e numerici per il processo di svuotamento di un sistema di particelle in condizioni di Single File. In questa tesi, dopo una breve introduzione ai processi diffusivi fortemente confinati, passeremo in rassegna i lavori più rilevanti della letteratura teorica e sperimentale sulla Single File Diffusion, con particolare attenzione ad un formalismo matematico, il Reflection Principle Method, che sarà applicato in maniera estensiva nel corso della tesi. Studieremo poi le proprietà di un sistema di particelle diffusive in Single File in presenza di condizioni al contorno assorbenti, concentrandoci sulla survival probability, cioè la probabilità di trovare una particella fra gli estremi del sistema al tempo t. Mostreremo come, in condizioni di Single File, abbiamo ottenuto una soluzione analitica per il processo di svuotamento, cioè calcoleremo la probabilità che caratterizza la progressiva diminuzione del numero di particelle in presenza di condizioni al contorno assorbenti, e per la survival probability di una particella 'marcata' all'interno della Single File sia in presenza che in assenza di una forza esterna costante. Caratterizzeremo gli andamenti dei tempi caratteristici di sopravvivenza, chiamati Tempi Medi di Primo Passaggio, in funzione della taglia del canale e del numero iniziale di particelle. Indagheremo inoltre numericamente il caso in cui solo la particella centrale del sistema in Single File subisce l'effetto delle condizioni al contorno assorbenti. Osserviamo un decadimento esponenziale della survival probability, come accade nell'usuale moto Browniano, anche in presenza di estremo confinamento. Introdurremo l'attività nella Single File attraverso un modello di particelle Self-Propelled, di cui descriveremo le proprietà in dettaglio. In particolare in questo modello le particelle possono essere o runners o tumblers, a seconda che la loro traiettoria sia dominata da lunghi tratti rettilinei o da cambi di direzione. In condizioni di Single File, i runners tendono a formare aggregati dinamici: questi cluster vengono continuamente formati e distrutti dalle fluttuazioni casuali della forza propulsiva. Per i tumblers, le probabilità di sopravvivenza sono ben descritte dalla teoria analitica sviluppata per le particelle passive. Per contro, la formazione di cluster dinamici accresce i comportamenti anomali nei tempi caratteristici di sopravvivenza dei runners e ne induce una notevole capacità di opporsi all'azione di un campo esterno.
Nötel, Jörg [Verfasser], L. [Gutachter] Schimansky-Geier, H. [Gutachter] Engel y E. E. N. [Gutachter] Macau. "Active Brownian Particles with alpha Stable Noise in the Angular Dynamics: Non Gaussian Displacements, Adiabatic Eliminations, and Local Searchers / Jörg Nötel ; Gutachter: L. Schimansky-Geier, H. Engel, E. E. N. Macau". Berlin : Humboldt-Universitaet zu Berlin, 2019. http://d-nb.info/1175995150/34.
Texto completoLibros sobre el tema "Active Brownian Particles"
Brownian Agents and Active Particles: Collective dynamics in the natural and social sciences. Berlin: Springer, 2003.
Buscar texto completoBrowning [sic] agents and active particles: Collective dynamics in the natural and social sciences. 2a ed. Berlin: Springer, 2007.
Buscar texto completoBrowning [sic] agents and active particles: Collective dynamics in the natural and social sciences. 2a ed. Berlin: Springer, 2007.
Buscar texto completoFarmer, J. D. y Frank Schweitzer. Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences. Springer London, Limited, 2007.
Buscar texto completoSchweitzer, Frank. Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Springer Series in Synergetics). Springer, 2007.
Buscar texto completoBrowning Agents and Active Particles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73845-9.
Texto completoCapítulos de libros sobre el tema "Active Brownian Particles"
Callegari, Agnese y Giovanni Volpe. "Numerical Simulations of Active Brownian Particles". En Soft and Biological Matter, 211–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23370-9_7.
Texto completoEbeling, Werner. "Nonlinear Dynamics of Active Brownian Particles". En Computational Statistical Physics, 141–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04804-7_9.
Texto completoSchweitzer, F. "Active Brownian Particles with Internal Energy Depot". En Traffic and Granular Flow ’99, 161–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59751-0_15.
Texto completoLozano, Celia, Tobias Bäuerle y Clemens Bechinger. "Active Brownian Particles with Programmable Interaction Rules". En Active Matter and Nonequilibrium Statistical Physics, 219–29. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192858313.003.0007.
Texto completo"Active Brownian particles and Nosé-Hoover dynamics". En Advanced Series in Nonlinear Dynamics, 303–15. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812771513_0016.
Texto completoSCHWEITZER, FRANK. "Modelling Migration and Economic Agglomeration with Active Brownian Particles". En Modeling Complexity in Economic and Social Systems, 137–59. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777263_0010.
Texto completoActas de conferencias sobre el tema "Active Brownian Particles"
Velu, Sabareesh K. P., Erçağ Pinçe, Agnese Callegari, Parviz Elahi, Sylvain Gigan, Giovanni Volpe y Giorgio Volpe. "Controlling Active Brownian Particles in Complex Settings". En Optical Trapping Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ota.2017.otm2e.2.
Texto completoVolpe, Giorgio, Sylvain Gigan y Giovanni Volpe. "Simulation of active Brownian particles in optical potentials". En SPIE NanoScience + Engineering, editado por Kishan Dholakia y Gabriel C. Spalding. SPIE, 2014. http://dx.doi.org/10.1117/12.2061049.
Texto completoYadav, Sunil Kumar y Shankar P. Das. "Field-theoretic model for dynamics of active Brownian particles". En DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112870.
Texto completoArgun, Aykut y Giovanni Volpe. "Statistics of Brownian particles held in non-harmonic potentials in an active bath". En Optical Manipulation and Its Applications. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/oma.2019.at1e.3.
Texto completoIto, Kana y Akira Satoh. "On the Hybrid-Type Method of Brownian Dynamics and Lattice Boltzmann for Activating the Brownian Motion of Magnetic Particles". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87165.
Texto completoOu-Yang, H. Daniel y Chong Shen. "Fluctuation-dissipation of an active Brownian particle under confinement". En Optical Trapping and Optical Micromanipulation XV, editado por Kishan Dholakia y Gabriel C. Spalding. SPIE, 2018. http://dx.doi.org/10.1117/12.2325011.
Texto completoShen, Chong, Zhiyu Jiang, Lanfang Li y H. Daniel Ou-Yang. "Extract active fluctuations from total fluctuations of a confined active Brownian particle". En Optical Trapping and Optical Micromanipulation XVII, editado por Kishan Dholakia y Gabriel C. Spalding. SPIE, 2020. http://dx.doi.org/10.1117/12.2570663.
Texto completoYokoyama, Haruka y Akira Satoh. "On the Behavior of an Oblate Spheroidal Hematite Particle in a Simple Shear Flow Under a Uniform Magnetic Field Applied in the Flow Direction". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64226.
Texto completoTian, Lin y Goodarz Ahmadi. "Effect of Brownian Dynamics on Ellipsoidal Fibers in Human Tracheobronchial Airways". En ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-32335.
Texto completoOkada, Kazuya y Akira Satoh. "Analysis of a Stokes Flow Past a Cube (Friction and Diffusion Coefficients for Brownian Dynamics Simulations)". En ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10549.
Texto completo