Artículos de revistas sobre el tema "Acrylamide-Based polymers"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Acrylamide-Based polymers".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Dragan, Stela y Cristina Doina Vlad. "Functional polymers based on acrylamide crosslinked copolymers". Macromolecular Symposia 181, n.º 1 (mayo de 2002): 47–56. http://dx.doi.org/10.1002/1521-3900(200205)181:1<47::aid-masy47>3.0.co;2-8.
Texto completoHoffman, Allan S. "Environmentally Sensitive Polymers and Hydrogels". MRS Bulletin 16, n.º 9 (septiembre de 1991): 42–46. http://dx.doi.org/10.1557/s0883769400056049.
Texto completoKolouchová, Kristýna y Ondřej Groborz. "Multiresponsive Polymer Tracers for ¹⁹F MRI Based on Poly[N-(2,2-difluoroethyl) Acrylamide]". Chemické listy 116, n.º 3 (15 de marzo de 2022): 180–86. http://dx.doi.org/10.54779/chl20220180.
Texto completoQuan, Xie, Su y Feng. "The Thermoviscosifying Behavior of Water-Soluble Polymer Based on Graft Polymerization of Pluronic F127 with Acrylamide and 2-Acrylamido-2-methylpropane Sulfonic Acid Sodium Salt". Polymers 11, n.º 10 (16 de octubre de 2019): 1702. http://dx.doi.org/10.3390/polym11101702.
Texto completoSari, Repita, Sri Mulijani y Meri Suhartini. "Improvement of PVA-Glucomanan-Acrylamide Hydrogel as Base Material of Immobilization". Jurnal Kimia Valensi 8, n.º 1 (10 de mayo de 2022): 1–9. http://dx.doi.org/10.15408/jkv.v8i1.20332.
Texto completoGussenov, Iskander Sh, Alexey V. Shakhvorostov, Nurbatyr Mukhametgazy y Sarkyt E. Kudaibergenov. "Synthetic polyampholytes based on acrylamide derivatives – new polymer for enhanced oil recovery". Kazakhstan journal for oil & gas industry 4, n.º 4 (21 de enero de 2023): 104–16. http://dx.doi.org/10.54859/kjogi108622.
Texto completoNadtoka, O., O. Vashchenko y N. Kutsevol. "THERMAL PROPERTIES OF CROSS-LINKED POLYMERS BASED ON CHITOSAN AND POLYACRYLAMIDE". Polymer journal 45, n.º 3 (9 de septiembre de 2023): 214–20. http://dx.doi.org/10.15407/polymerj.45.03.214.
Texto completoMahmood, Arshad, Alia Erum, Sophia Mumtaz, Ume Ruqia Tulain, Nadia Shamshad Malik y Mohammed S. Alqahtani. "Preliminary Investigation of Linum usitatissimum Mucilage-Based Hydrogel as Possible Substitute to Synthetic Polymer-Based Hydrogels for Sustained Release Oral Drug Delivery". Gels 8, n.º 3 (9 de marzo de 2022): 170. http://dx.doi.org/10.3390/gels8030170.
Texto completoWang, Heng, Shifeng Xu, Jia Ma, Zhaoyang Wang y Enzhu Hou. "Investigation of high thickness holographic gratings in acrylamide-based photopolymer". Modern Physics Letters B 30, n.º 32n33 (30 de noviembre de 2016): 1650382. http://dx.doi.org/10.1142/s0217984916503826.
Texto completoKhan, Sarfaraz, Huaili Zheng, Qiang Sun, Yongzhi Liu, Hong Li, Wei Ding y Andrea Navarro. "Analysis of Influencing Factors for Leaching of Acrylamide Monomer from Polyacrylamide-Based Flocculants Used in the Treatment of Sludge Dewatering". Sensor Letters 18, n.º 2 (1 de febrero de 2020): 128–32. http://dx.doi.org/10.1166/sl.2020.4194.
Texto completoYang, Jun, Tengfei Dong, Jingtian Yi y Guancheng Jiang. "Development of Multiple Crosslinked Polymers and Its Application in Synthetic-Based Drilling Fluids". Gels 10, n.º 2 (2 de febrero de 2024): 120. http://dx.doi.org/10.3390/gels10020120.
Texto completoUmerzakova, M. B., R. M. Iskakov, R. B. Sarieva, Zh N. Kainarbayeva y A. A. Espenbetov. "COMPOSITE MATERIALS BASED ON ALICYCLIC COPOLYIMIDE AND ACRYLIC ACID COPOLYMER WITH ACRYLAMIDE". Chemical Journal of Kazakhstan, n.º 3 (15 de septiembre de 2023): 15–27. http://dx.doi.org/10.51580/2023-3.2710-1185.24.
Texto completoHennig, Kathleen y Wolfdietrich Meyer. "Synthesis and Characterization of Catechol-Containing Polyacrylamides with Adhesive Properties". Molecules 27, n.º 13 (23 de junio de 2022): 4027. http://dx.doi.org/10.3390/molecules27134027.
Texto completoSudhakar, Dr K., Leo Amalraj, V. Lakshmi Tejaswini, N. Mourya Sree, P. Divya Harshitha y M. Rubika Julie. "Eco-friendly Biodegradable Super Absorbent Polymers (SAPs); An Effective Water Retainer and Agrofertilizer". Alinteri Journal of Agriculture Sciences 36, n.º 1 (29 de junio de 2021): 753–56. http://dx.doi.org/10.47059/alinteri/v36i1/ajas21105.
Texto completoGe, Qi, Zhe Chen, Jianxiang Cheng, Biao Zhang, Yuan-Fang Zhang, Honggeng Li, Xiangnan He et al. "3D printing of highly stretchable hydrogel with diverse UV curable polymers". Science Advances 7, n.º 2 (enero de 2021): eaba4261. http://dx.doi.org/10.1126/sciadv.aba4261.
Texto completoCody, Dervil, Alan Casey, Izabela Naydenova y Emilia Mihaylova. "A Comparative Cytotoxic Evaluation of Acrylamide and Diacetone Acrylamide to Investigate Their Suitability for Holographic Photopolymer Formulations". International Journal of Polymer Science 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/564319.
Texto completoLei, Lei, Qi Zhang, Shuxian Shi y Shiping Zhu. "Oxygen-switchable thermo-responsive random copolymers". Polymer Chemistry 7, n.º 34 (2016): 5456–62. http://dx.doi.org/10.1039/c6py01145d.
Texto completoOnishi, Hayato, Yuta Koda y Hideo Horibe. "Thermoresponsive Conductivity of Acrylamide-based Polymers and Ni Microparticle Composites". Chemistry Letters 49, n.º 10 (5 de octubre de 2020): 1224–27. http://dx.doi.org/10.1246/cl.200342.
Texto completoChen, Jiawen, Jun Ye, Mingming Zhang y Jian Xiong. "A Fast and Easy Probe Based on CMC/Eu (Ⅲ) Nanocomposites to Detect Acrylamide in Different Food Simulants Migrating from Food-Contacting Paper Materials". Polymers 14, n.º 17 (30 de agosto de 2022): 3578. http://dx.doi.org/10.3390/polym14173578.
Texto completoWang, Ren, Jie Yang, Luman Liu, Jianlong Wang, Zhenbo Feng, Die Zhang, Shan Gao, Jiao Wang, Han Ren y Baotong Hui. "Investigation on Filtration Control of Zwitterionic Polymer AADN in High Temperature High Pressure Water-Based Drilling Fluids". Gels 8, n.º 12 (14 de diciembre de 2022): 826. http://dx.doi.org/10.3390/gels8120826.
Texto completoWang, Dan, Zhan Qian Song, Shi Bin Shang, Zhan Jun Wang y Myoung Ku Lee. "Preparation and Characterization of Kenaf-Based Superabsorbent Polymers". Advanced Materials Research 183-185 (enero de 2011): 1812–16. http://dx.doi.org/10.4028/www.scientific.net/amr.183-185.1812.
Texto completoEL-Sharif, Hazim F., Daniel M. Hawkins, Derek Stevenson y Subrayal M. Reddy. "Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs)". Phys. Chem. Chem. Phys. 16, n.º 29 (2014): 15483–89. http://dx.doi.org/10.1039/c4cp01798f.
Texto completoLi, Jian, Jinsheng Sun, Kaihe Lv, Yuxi Ji, Jintao Ji y Jingping Liu. "Nano-Modified Polymer Gels as Temperature- and Salt-Resistant Fluid-Loss Additive for Water-Based Drilling Fluids". Gels 8, n.º 9 (29 de agosto de 2022): 547. http://dx.doi.org/10.3390/gels8090547.
Texto completoYamamoto, Sachio, Shoko Yano, Mitsuhiro Kinoshita y Shigeo Suzuki. "In Situ Pinpoint Photopolymerization of Phos-Tag Polyacrylamide Gel in Poly(dimethylsiloxane)/Glass Microchip for Specific Entrapment, Derivatization, and Separation of Phosphorylated Compounds". Gels 7, n.º 4 (16 de diciembre de 2021): 268. http://dx.doi.org/10.3390/gels7040268.
Texto completoEl-Rehim, H. A. Abd. "Fast Swelling and Superabsorbent Properties of Radiation Crosslinked Acrylamide Based Polymers". International Journal of Polymeric Materials 55, n.º 3 (marzo de 2006): 161–74. http://dx.doi.org/10.1080/009140390916594.
Texto completoCraciun, Gabriela y Elena Manaila and Daniel Ighigeanu. "New Type of Sodium Alginate-g-acrylamide Polyelectrolyte Obtained by Electron Beam Irradiation: Characterization and Study of Flocculation Efficacy and Heavy Metal Removal Capacity". Polymers 11, n.º 2 (1 de febrero de 2019): 234. http://dx.doi.org/10.3390/polym11020234.
Texto completoGomes, Dias y Costa. "Static Light Scattering Monitoring and Kinetic Modeling of Polyacrylamide Hydrogel Synthesis". Processes 7, n.º 4 (24 de abril de 2019): 237. http://dx.doi.org/10.3390/pr7040237.
Texto completoGao, Yulei, Xiang Di, Fenfen Wang y Pingchuan Sun. "Room temperature tunable multicolor phosphorescent polymers for humidity detection and information encryption". RSC Advances 12, n.º 13 (2022): 8145–53. http://dx.doi.org/10.1039/d2ra00294a.
Texto completoBarabanova, Anna, Andrei Shibaev, Vyacheslav Molchanov, Olga Philippova y Alexei Khokhlov. "Preparation of Magnetic Fluids Based on Associated Polymers". Advanced Materials Research 650 (enero de 2013): 314–19. http://dx.doi.org/10.4028/www.scientific.net/amr.650.314.
Texto completoKohut, Ananiy, Stanislav Voronov, Zoriana Demchuk, Vasylyna Kirianchuk, Kyle Kingsley, Oleg Shevchuk, Sylvain Caillol y Andriy Voronov. "Non-Conventional Features of Plant Oil-Based Acrylic Monomers in Emulsion Polymerization". Molecules 25, n.º 13 (30 de junio de 2020): 2990. http://dx.doi.org/10.3390/molecules25132990.
Texto completoWu, Xiaohua, Zhen Zhang, Haiying Lu, Xiao Luo, Chengli Li y Qiang Li. "Preparation and Application of Environmentally-Friendly Copolymer Filtration Control Agent Based on Hydrogen Bonding". Journal of Physics: Conference Series 2679, n.º 1 (1 de enero de 2024): 012039. http://dx.doi.org/10.1088/1742-6596/2679/1/012039.
Texto completoGao, Nanxiao, Jian Chen, Min Qiao, Guangcheng Shan, Jingzhi Wu y Qianping Ran. "Anionic Copolymers with Different Charge Densities for Regulating the Properties of Cement Pastes". Materials 15, n.º 21 (30 de octubre de 2022): 7629. http://dx.doi.org/10.3390/ma15217629.
Texto completoDei, Nanako, Kazuhiko Ishihara, Akikazu Matsumoto y Chie Kojima. "Preparation and Characterization of Acrylic and Methacrylic Phospholipid-Mimetic Polymer Hydrogels and Their Applications in Optical Tissue Clearing". Polymers 16, n.º 2 (15 de enero de 2024): 241. http://dx.doi.org/10.3390/polym16020241.
Texto completoSchechter, LeeAnn, Bruce K. Bernard, Frank W. Barvenik, John G. McNally, Marvin Friedman, Amy Essenfeld y Randy Deskin. "Evaluation of the Toxicological Risk Associated with the Use of Polyacrylamides in the Recovery of Nutrients from Food Processing Waste (I)". Journal of the American College of Toxicology 13, n.º 4 (agosto de 1994): 261–72. http://dx.doi.org/10.3109/10915819409140598.
Texto completoBaker, John P., David R. Stephens, Harvey W. Blanch y John M. Prausnitz. "Swelling equilibria for acrylamide-based polyampholyte hydrogels". Macromolecules 25, n.º 7 (marzo de 1992): 1955–58. http://dx.doi.org/10.1021/ma00033a019.
Texto completoLiang, Feng, Ghaithan Al-Muntasheri, Hooisweng Ow y Jason Cox. "Reduced-Polymer-Loading, High-Temperature Fracturing Fluids by Use of Nanocrosslinkers". SPE Journal 22, n.º 02 (5 de octubre de 2016): 622–31. http://dx.doi.org/10.2118/177469-pa.
Texto completoJouenne, S. y B. Levache. "Universal viscosifying behavior of acrylamide-based polymers used in enhanced oil recovery". Journal of Rheology 64, n.º 5 (septiembre de 2020): 1295–313. http://dx.doi.org/10.1122/8.0000063.
Texto completoKenawy, El-Refaie. "Biologically active polymers: controlled-release formulations based on crosslinked acrylamide gel derivatives". Reactive and Functional Polymers 36, n.º 1 (febrero de 1998): 31–39. http://dx.doi.org/10.1016/s1381-5148(97)00095-3.
Texto completoQuoika, Patrick K., Maren Podewitz, Yin Wang, Anna S. Kamenik, Johannes R. Loeffler y Klaus R. Liedl. "Thermosensitive Hydration of Four Acrylamide-Based Polymers in Coil and Globule Conformations". Journal of Physical Chemistry B 124, n.º 43 (15 de octubre de 2020): 9745–56. http://dx.doi.org/10.1021/acs.jpcb.0c07232.
Texto completoPrasetyaningrum, Aji, Al Farrel A. Raemas, Nur Rokhati y Bakti Jos. "Application of Glyoxal Acrylamide Modified Κ-Carrageenan as A Superabsorbent Polymer in Drug Delivery System". Reaktor 20, n.º 3 (13 de octubre de 2020): 150–58. http://dx.doi.org/10.14710/reaktor.20.3.150-158.
Texto completoSu, Li Qiang, Ying Wang y Hong Tao Chu. "Chiral Separation of Amino Acid Derivatives by Molecular Imprinting Technique". Advanced Materials Research 239-242 (mayo de 2011): 2545–48. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.2545.
Texto completoF. Abdullah1, Saja. "SYNTHESIS OF NEW LEVOFLOXACIN SELECTIVE MEMBRANE SENSOR BASED ON MOLECULARLY IMPRINTED POLYMERS." iraq journal of market research and consumer protection 13, n.º 1 (30 de junio de 2021): 95–107. http://dx.doi.org/10.28936/jmracpc13.1.2021.(10).
Texto completoRychter, Piotr, Diana Rogacz, Kamila Lewicka, Jozef Kollár, Michał Kawalec y Jaroslav Mosnáček. "Ecotoxicological Properties of Tulipalin A-Based Superabsorbents versus Conventional Superabsorbent Hydrogels". Advances in Polymer Technology 2019 (3 de marzo de 2019): 1–15. http://dx.doi.org/10.1155/2019/2947152.
Texto completoDevasahayam, Sheila, M. Ameen, T. Verheyen y Sri Bandyopadhyay. "Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic) Based Super Absorbent Polymers". Minerals 5, n.º 4 (30 de septiembre de 2015): 623–36. http://dx.doi.org/10.3390/min5040512.
Texto completoYokota, Shingo, Takefumi Ohta, Takuya Kitaoka y Hiroyuki Wariishi. "Adsorption of cellobiose-pendant polymers to a cellulose matrix determined by quartz crystal microbalance analysis". BioResources 4, n.º 3 (24 de junio de 2009): 1098–108. http://dx.doi.org/10.15376/biores.4.3.1098-1108.
Texto completoPoliwoda, Anna, Małgorzata Mościpan y Piotr P. Wieczorek. "Application of Molecular Imprinted Polymers for Selective Solid Phase Extraction of Bisphenol A". Ecological Chemistry and Engineering S 23, n.º 4 (1 de diciembre de 2016): 651–64. http://dx.doi.org/10.1515/eces-2016-0046.
Texto completoBraun, Olivier, Clément Coquery, Johann Kieffer, Frédéric Blondel, Cédrick Favero, Céline Besset, Julien Mesnager, François Voelker, Charlène Delorme y Dimitri Matioszek. "Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances". Molecules 27, n.º 1 (22 de diciembre de 2021): 42. http://dx.doi.org/10.3390/molecules27010042.
Texto completoArrua, Ruben Dario, Daniel Serrano, Gustavo Pastrana, Miriam Strumia y Cecilia I. Alvarez Igarzabal. "Synthesis of macroporous polymer rods based on an acrylamide derivative monomer". Journal of Polymer Science Part A: Polymer Chemistry 44, n.º 22 (2006): 6616–23. http://dx.doi.org/10.1002/pola.21768.
Texto completoWang, Y. F., T. M. Chen, A. Kuriu, Y. J. Li y T. Nakaya. "Studies on novel phosphatidylcholine-modified acrylamide-based hydrogels". Journal of Applied Polymer Science 64, n.º 7 (16 de mayo de 1997): 1403–9. http://dx.doi.org/10.1002/(sici)1097-4628(19970516)64:7<1403::aid-app20>3.0.co;2-w.
Texto completoDistantina, Sperisa, Nurul Hidayatun, Shifa Annisa Nabila, Mujtahid Kaavessina y Fadilah Fadilah. "Effect of Acrylamide And Potassium Peroxodisulphate on The Quality of Bead Gel Based on Cassava Bagasse-Carrageenan Using Microwave Grafting Method". Equilibrium Journal of Chemical Engineering 6, n.º 2 (4 de enero de 2023): 135. http://dx.doi.org/10.20961/equilibrium.v6i2.68130.
Texto completo