Literatura académica sobre el tema "Acid hydrolysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Acid hydrolysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Acid hydrolysis"
Paventi, Martino, Francis L. Chubb y John T. Edward. "Assisted hydrolysis of the nitrile group of 2-aminoadamantane-2-carbonitrile". Canadian Journal of Chemistry 65, n.º 9 (1 de septiembre de 1987): 2114–17. http://dx.doi.org/10.1139/v87-351.
Texto completoKurbanova, Marina y Svetlana Maslennikova. "Acid Hydrolysis of Casein". Foods and Raw Materials 2, n.º 1 (26 de mayo de 2014): 27–30. http://dx.doi.org/10.12737/4124.
Texto completoThanh Ngoc, Nguyen Thi. "INFLUENCES OF TECHOLOGICAL HYDROLYSIS CONDITION ON NUCLEIC ACID CONTENT OF SPENT BREWER’S YEAST HYDROLYSATE". Vietnam Journal of Science and Technology 55, n.º 5A (24 de marzo de 2018): 169. http://dx.doi.org/10.15625/2525-2518/55/5a/12192.
Texto completoHendriks, W. H., M. F. Tarttelin y P. J. Moughan. "The amino acid composition of cat (Felis catus) hair". Animal Science 67, n.º 1 (agosto de 1998): 165–70. http://dx.doi.org/10.1017/s1357729800009905.
Texto completoPęksa, A. y J. Miedzianka. "Amino acid composition of enzymatically hydrolysed potato protein preparations". Czech Journal of Food Sciences 32, No. 3 (11 de junio de 2014): 265–72. http://dx.doi.org/10.17221/286/2013-cjfs.
Texto completoLü, F., P. J. He, L. P. Hao y L. M. Shao. "Impact of recycled effluent on the hydrolysis during anaerobic digestion of vegetable and flower waste". Water Science and Technology 58, n.º 8 (1 de octubre de 2008): 1637–43. http://dx.doi.org/10.2166/wst.2008.511.
Texto completoSinninghe Damsté, Jaap S., W. Irene C. Rijpstra, Ellen C. Hopmans, Johan W. H. Weijers, Bärbel U. Foesel, Jörg Overmann y Svetlana N. Dedysh. "13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3". Applied and Environmental Microbiology 77, n.º 12 (22 de abril de 2011): 4147–54. http://dx.doi.org/10.1128/aem.00466-11.
Texto completoZhuang, Jun Ping, Lu Lin, Chun Sheng Pang y Ying Liu. "Hydrolysis Kinetics of Wheat Straw in Saturated Formic Acid / 4% Hydrochloric Acid Solution". Advanced Materials Research 236-238 (mayo de 2011): 138–41. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.138.
Texto completoFreeman, Stuart J., Prema Shankaran, Leonhard S. Wolfe y John W. Callahan. "Phosphatidylcholine and 4-methylumbelliferyl phosphorylcholine hydrolysis by purified placental sphingomyelinase". Canadian Journal of Biochemistry and Cell Biology 63, n.º 4 (1 de abril de 1985): 272–77. http://dx.doi.org/10.1139/o85-040.
Texto completoLoh, Zhi Hung, Natasha L. Hungerford, Diane Ouwerkerk, Athol V. Klieve y Mary T. Fletcher. "Identification of Acid Hydrolysis Metabolites of the Pimelea Toxin Simplexin for Targeted UPLC-MS/MS Analysis". Toxins 15, n.º 9 (5 de septiembre de 2023): 551. http://dx.doi.org/10.3390/toxins15090551.
Texto completoTesis sobre el tema "Acid hydrolysis"
Burton, Russell J. "Mild acid hydrolysis of wood". Thesis, Loughborough University, 1986. https://dspace.lboro.ac.uk/2134/27345.
Texto completoPeña, Duque Leidy Eugenia. "Acid-functionalized nanoparticles for biomass hydrolysis". Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16800.
Texto completoDepartment of Biological & Agricultural Engineering
Donghai Wang
Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe[superscript]2O[subscript]4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe[superscript]2O[superscript]4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the β-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during the catalytic reactions. PS nanoparticles were further evaluated for the pretreatment of corn stover in order to increase digestibility of the biomass. The pretreatment was carried out at three different catalyst load and temperature levels. At 180°C, the total glucose yield was linearly correlated to the catalyst load. A maximum glucose yield of 90% and 58% of the hemicellulose sugars were obtained at this temperature.
Dolmetsch, Troy R. "Phosphomolybdic Acid Catalysis of Cellulose Hydrolysis". Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/honors/413.
Texto completoKupiainen, L. (Laura). "Dilute acid catalysed hydrolysis of cellulose – extension to formic acid". Doctoral thesis, Oulun yliopisto, 2012. http://urn.fi/urn:isbn:9789526200033.
Texto completoTiivistelmä Uusia menetelmiä etsitään kemikaalien, polttoaineiden ja energian valmistamiseen uusiutuvasta biomassasta. Eräs biomassa, ns. lignoselluloosa, koostuu pääasiassa selluloosasta, hemiselluloosasta ja ligniinistä. Selluloosa ja hemiselluloosa voidaan muuttaa hydrolyysin avulla niiden rakennuspalikoikseen eli sokereiksi. Tämä väitöskirja keskittyy glukoosin tuottamiseen selluloosasta laimean happohydrolyysin menetelmällä. Happohydrolyysi kärsii rajoittuneesta glukoosin saannosta, mutta sillä on potentiaalia tulla lyhyen aikavälin ratkaisuksi biokemikaalien tuotannossa. Happohydrolyysin aikana selluloosaketju pilkkoutuu glukoosiksi, joka reagoi edelleen hajoamisreaktioiden kautta hydroksimetyylifurfuraaliksi, levuliini- ja muurahaishapoiksi ja kiinteäksi sivutuotteeksi. Tämän tutkimuksen tavoitteena on kasvattaa ymmärrystämme monimutkaisesta happokatalysoidusta selluloosan hydrolyysistä. Glukoosin hajoamista ja selluloosan hydrolyysiä tutkittiin erikseen laboratoriokokein. Kineettistä mallinnusta käytettiin työkaluna arvioimaan tuloksia. Vety-ionien vaikutus reaktioihin arvioitiin käyttämällä muurahais- ja rikkihappoja katalyytteinä. Tämä väitöskirja antaa uutta tietoa selluloosan hydrolyysistä ja glukoosin hajoamisreaktioista muurahaishapossa, joka on uusi katalyytti korkean lämpötilan laimean hapon hydrolyysissä. Glukoosisaannot muurahaishappo-hydrolysoidusta selluloosasta olivat vertailukelpoisia vastaaviin rikkihappo-hydrolyysi saantoihin. Tämä viittaa siihen, että heikko orgaaninen happo voisi toimia selluloosahydrolyysin katalyyttinä. Kun katalyyttinä käytettiin muurahaishappoa, vehnän oljesta tehdyt kuidut hydrolysoituivat selektiivisemmin glukoosiksi kuin mallikomponenttina toimineen mikrokiteisen selluloosan. Kun vetyionikonsentraation lämpötilariippuvuus otettiin huomioon, glukoosi hajosi samalla tavalla sekä muurahais- että rikkihappokatalyytissä, mutta merkittävä ero havaittiin selluloosahydrolyysin reaktionopeudessa. Havainnot voidaan selittää selluloosahydrolyysin mekanismissa tapahtuvilla muutoksilla. Väitöskirjassa esitetään, että sivureaktioilla selluloosasta ei-glukoosi-tuotteiksi on merkittävä vaikutus systeemiin
Orozco, Angela Maria. "Dilute acid hydrolysis of municipal solid waste using phosphoric acid". Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501392.
Texto completoHartley, James Holroyd. "Saccharide accelerated hydrolysis of boronic acid imines". Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369335.
Texto completoPeña, Duque Leidy E. "Acid-functionalized nanoparticles for hydrolysis of lignocellulosic feedstocks". Thesis, Kansas State University, 2009. http://hdl.handle.net/2097/2201.
Texto completoDepartment of Biological and Agricultural Engineering
Donghai Wang
Acid catalysts have been successfully used for pretreatment of cellulosic biomass to improve sugar recovery and its later conversion to ethanol. However, use of acid requires a considerable equipment investment as well as disposal of residues. Acid-functionalized nanoparticles were synthesized for pretreatment and hydrolysis of lignocellulosic biomass to increase conversion efficiency at mild conditions. Advantages of using acid-functionalized metal nanoparticles are not only the acidic properties to catalyze hydrolysis and being small enough to penetrate into the lignocellulosic structure, but also being easily separable from hydrolysis residues by using a strong magnetic field. Cobalt spinel ferrite magnetic nanoparticles were synthesized using a microemulsion method and then covered with a layer of silica to protect them from oxidation. The silanol groups of the silica serve as the support of the sulfonic acid groups that were later attached to the surface of the nanoparticles. TEM images and FTIR methods were used to characterize the properties of acid-functionalized nanoparticles in terms of nanoparticle size, presence of sulfonic acid functional groups, and pH as an indicator of acid sites present. Citric acid-functionalized magnetite nanoparticles were also synthesized and evaluated. Wheat straw and wood fiber samples were treated with the acid supported nanoparticles at 80°C for 24 h to hydrolyze their hemicellulose fraction to sugars. Further hydrolysis of the liquid fraction was carried out to account for the amount of total solubilized sugars. HPLC was used to determine the total amount of sugars obtained in the aqueous solution. The perfluroalkyl-sulfonic acid functional groups from the magnetic nanoparticles yielded significantly higher amounts of oligosaccharides from wood and wheat straw samples than the alkyl-sulfonic acid functional groups did. More stable fluorosulfonic acid functionalized nanoparticles can potentially work as an effective heterogeneous catalyst for pretreatment of lignocellulosic materials.
Pena, Duque Leidy E. "Acid-functionalized nanoparticles for hydrolysis of lignocellulosic feedstocks". Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2201.
Texto completoYusoff, M. I. "The acid-catalysed hydrolysis of some mesoionic heterocyclic compounds". Thesis, University of Essex, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234173.
Texto completoPatel, Manisha. "Pyrolysis and gasification of biomass and acid hydrolysis residues". Thesis, Aston University, 2013. http://publications.aston.ac.uk/19567/.
Texto completoLibros sobre el tema "Acid hydrolysis"
Hartley, James Holroyd. Saccharide accelerated hydrolysis of boronic acid imines. Birmingham: University of Birmingham, 2000.
Buscar texto completoVecil, Giacomo G. Pharmacological characterization of excitatory amino acid-induced polyphosphoinositide hydrolysis. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Buscar texto completoF, Harris John y Forest Products Laboratory (U.S.), eds. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Buscar texto completoZerbe, John I. Investigation of fundamentals of two-stage, dilute sulfuric acid hydrolysis of wood. [Madison, Wis.?: Forest Products Laboratory, 1988.
Buscar texto completoZerbe, John I. Investigation of fundamentals of two-stage, dilute sulfuric acid hydrolysis of wood. [Madison, Wis.?: Forest Products Laboratory, 1988.
Buscar texto completoBrenner, Walter. High temperature dilute acid hydrolysis of waste cellulose: Batch and continuous processes. Cincinnati, OH: Hazardous Waste Engineering Research Laboratory, U.S. Environmental Protection Agency, 1986.
Buscar texto completoZerbe, John I. Investigation of fundamentals of two-stage, dilute sulfuric acid hydrolysis of wood. [Madison, Wis.?: Forest Products Laboratory, 1988.
Buscar texto completo1940-, Harris John Frank y Forest Products Laboratory (U.S.), eds. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Buscar texto completo1940-, Harris John Frank y Forest Products Laboratory (U.S.), eds. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Buscar texto completo1940-, Harris John Frank y Forest Products Laboratory (U.S.), eds. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Buscar texto completoCapítulos de libros sobre el tema "Acid hydrolysis"
Dörr, Mark. "Acid Hydrolysis". En Encyclopedia of Astrobiology, 37–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_21.
Texto completoDörr, Mark. "Acid Hydrolysis". En Encyclopedia of Astrobiology, 10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_21.
Texto completoDörr, Mark. "Acid Hydrolysis". En Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_21-2.
Texto completoDörr, Mark. "Acid Hydrolysis". En Encyclopedia of Astrobiology, 50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_21.
Texto completoFan, Liang-tseng, Mahendra Moreshwar Gharpuray y Yong-Hyun Lee. "Acid Hydrolysis of Cellulose". En Cellulose Hydrolysis, 121–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72575-3_4.
Texto completoNguyen, Quang A., Melvin P. Tucker, Fred A. Keller, Delicia A. Beaty, Kevin M. Connors y Fannie P. Eddy. "Dilute Acid Hydrolysis of Softwoods". En Twentieth Symposium on Biotechnology for Fuels and Chemicals, 133–42. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-4612-1604-9_13.
Texto completoSlakey, L. L. "Extracellular Nucleotide Hydrolysis and Integration of Signalling". En Biochemistry of Arachidonic Acid Metabolism, 323–41. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2597-0_20.
Texto completoGuo, Qingbin, Lianzhong Ai y Steve W. Cui. "Partial Acid Hydrolysis and Molecular Degradation". En SpringerBriefs in Molecular Science, 37–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96370-9_5.
Texto completoPenner, Michael H., Andrew G. Hashimoto, Alireza Esteghlalian y John J. Fenske. "Acid-Catalyzed Hydrolysis of Lignocellulosic Materials". En ACS Symposium Series, 12–31. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0647.ch002.
Texto completoLee, Y. Y., Prashant Iyer y R. W. Torget. "Dilute-Acid Hydrolysis of Lignocellulosic Biomass". En Recent Progress in Bioconversion of Lignocellulosics, 93–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-49194-5_5.
Texto completoActas de conferencias sobre el tema "Acid hydrolysis"
M Soleimani, L Tabil, S Panigrahi y B Crerar. "Kinetics of Acid-Catalyzed Hemicellulose Hydrolysis". En 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.27364.
Texto completoZhang, Qin, Yanbin Li, Jingjing Li y Chunmei Ma. "Dilute acid hydrolysis of cotton stalks and ethanol production from hydrolytic liquids". En Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930852.
Texto completoLeidy Peña, Donghai Wang, Keit Hohn, Milles Ikenberry y Dan Boyle. "Acid Functionalized Nanoparticles for Hydrolysis of Lignocellulosic Feedstocks". En 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.27249.
Texto completoTarigan, Ayu Syufiatun, Basuki Wirjosentono, Cut Fatimah Zuhra y Zulnazri. "Preparation of low crystallinity nanocellulose using acid hydrolysis". En THE II INTERNATIONAL SCIENTIFIC CONFERENCE “INDUSTRIAL AND CIVIL CONSTRUCTION 2022”. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0136122.
Texto completoYuangsawad, Ratanaporn, Sarawut Sinpichai, Arunrot Sukra y Duangkamol Na-Ranong. "Free sterols from acid hydrolysis of steryl glucosides". En 2021 6th International Conference on Business and Industrial Research (ICBIR). IEEE, 2021. http://dx.doi.org/10.1109/icbir52339.2021.9465867.
Texto completoYazdani, Parviz, Keikhosro Karimi y Mohammad J. Taherzadeh. "Improvement of Enzymatic Hydrolysis of A Marine Macro-Alga by Dilute Acid Hydrolysis Pretreatment". En World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp11057186.
Texto completoAndersson, Sanna, Mari Lähde, Satu Mikkola, Gareth Morris, Alicja Stachelska, Satu Valakoski y Nicholas H. Williams. "Metal ion-promoted hydrolysis of mRNA 5'-cap models". En XIIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2002. http://dx.doi.org/10.1135/css200205373.
Texto completoPopa, Emil, Tudorel Balau Mindru, Melinda Pruneanu y Stelian Sergiu Maier. "Studies on the Acid Hydrolysis of Chamois Leather Wastes". En The 6th International Conference on Advanced Materials and Systems. INCDTP - Division: Leather and Footwear Research Institute, Bucharest, RO, 2016. http://dx.doi.org/10.24264/icams-2016.iv.11.
Texto completoChao, Chung-Hsing, Tien-Chien Jen y Yen-Hsi Ho. "Analysis and Experiment on Dynamic Prediction in Magnesium Hydride Hydrolysis as Hydrogen Generator". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62502.
Texto completoJen, Tien-Chien, Joshua Adeniran, Esther Akinlabi, Chung-Hsing Chao, Yen-Hsi Ho y Johan De Koker. "Hydrogen Generation From Acetic Acid Catalyzed Magnesium Hydride Using an On-Demand Hydrogen Reactor". En ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66459.
Texto completoInformes sobre el tema "Acid hydrolysis"
Lee, Y. Y. Enhancement of Dilute-Acid Total-Hydrolysis Process. Office of Scientific and Technical Information (OSTI), abril de 2000. http://dx.doi.org/10.2172/764595.
Texto completoMarek, J. C. Hydrolysis of late-washed, irradiated tetraphenylborate slurry simulants I: Phenylboric acid hydrolysis kinetics. Office of Scientific and Technical Information (OSTI), febrero de 2000. http://dx.doi.org/10.2172/751282.
Texto completoHarris, John F., Andrew J. Baker, Anthony H. Conner, Thomas W. Jeffries, James L. Minor, Roger C. Pettersen, Ralph W. Scott, Edward L. Springer, Theodore H. Wegner y John I. Zerbe. Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1985. http://dx.doi.org/10.2737/fpl-gtr-45.
Texto completoLee, Y. Y., Qian Xiang, Tae-Hyun Kim y Junseok Kim. Enhancement of Dilute-Acid Total-Hydrolysis Process for High-Yield Saccharification of Cellulosic Biomass. Office of Scientific and Technical Information (OSTI), julio de 2000. http://dx.doi.org/10.2172/763027.
Texto completoVan Wychen, Stefanie R. y Lieve M. Laurens. Determination of Total Sterols in Microalgae by Acid Hydrolysis and Extraction: Laboratory Analytical Procedure (LAP). Issue Date: December 21, 2018. Office of Scientific and Technical Information (OSTI), diciembre de 2018. http://dx.doi.org/10.2172/1488917.
Texto completoTao, L., D. Schell, R. Davis, E. Tan, R. Elander y A. Bratis. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. Office of Scientific and Technical Information (OSTI), abril de 2014. http://dx.doi.org/10.2172/1129271.
Texto completoAden, A., M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, B. Wallace, L. Montague, A. Slayton y J. Lukas. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. Office of Scientific and Technical Information (OSTI), junio de 2002. http://dx.doi.org/10.2172/15001119.
Texto completoDean R. Peterman, Bruce J. Mincher, Catherine L. Riddle y Richard D. Tillotson. Summary Report on Gamma Radiolysis of TBP/n-dodecane in the Presence of Nitric Acid Using the Radiolysis/Hydrolysis Test Loop. Office of Scientific and Technical Information (OSTI), agosto de 2010. http://dx.doi.org/10.2172/993164.
Texto completoWooley, R., M. Ruth, J. Sheehan, K. Ibsen, H. Majdeski y A. Galvez. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios. Office of Scientific and Technical Information (OSTI), julio de 1999. http://dx.doi.org/10.2172/12150.
Texto completoLarson, Steven L., Deborah R. Felt, Scott Waisner, Catherine C. Nestler, Charles G. Coyle y Victor F. Medina. The Effect of Acid Neutralization on Analytical Results Produced from SW846 Method 8330 after the Alkaline Hydrolysis of Explosives in Soil. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2012. http://dx.doi.org/10.21236/ada570210.
Texto completo