Literatura académica sobre el tema "Acceleraton of particles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Acceleraton of particles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Acceleraton of particles"
Nishida, Yasushi. "Electron linear accelerator based on cross field acceleration principle". Laser and Particle Beams 7, n.º 3 (agosto de 1989): 561–79. http://dx.doi.org/10.1017/s0263034600007540.
Texto completoGuidoni, S. E., J. T. Karpen y C. R. DeVore. "Spectral Power-law Formation by Sequential Particle Acceleration in Multiple Flare Magnetic Islands". Astrophysical Journal 925, n.º 2 (1 de febrero de 2022): 191. http://dx.doi.org/10.3847/1538-4357/ac39a5.
Texto completoHogan, Mark J. "Electron and Positron Beam–Driven Plasma Acceleration". Reviews of Accelerator Science and Technology 09 (enero de 2016): 63–83. http://dx.doi.org/10.1142/s1793626816300036.
Texto completoOgata, Atsushi y Kazuhisa Nakajima. "Recent progress and perspectives of laser–plasma accelerators". Laser and Particle Beams 16, n.º 2 (junio de 1998): 381–96. http://dx.doi.org/10.1017/s0263034600011654.
Texto completoKalmykov, S., O. Polomarov, D. Korobkin, J. Otwinowski, J. Power y G. Shvets. "Novel techniques of laser acceleration: from structures to plasmas". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, n.º 1840 (24 de enero de 2006): 725–40. http://dx.doi.org/10.1098/rsta.2005.1734.
Texto completoFang, Jun, Qi Xia, Shiting Tian, Liancheng Zhou y Huan Yu. "Kinetic simulation of electron, proton and helium acceleration in a non-relativistic quasi-parallel shock". Monthly Notices of the Royal Astronomical Society 512, n.º 4 (14 de abril de 2022): 5418–22. http://dx.doi.org/10.1093/mnras/stac886.
Texto completoSow Mondal, Shanwlee, Aveek Sarkar, Bhargav Vaidya y Andrea Mignone. "Acceleration of Solar Energetic Particles by the Shock of Interplanetary Coronal Mass Ejection". Astrophysical Journal 923, n.º 1 (1 de diciembre de 2021): 80. http://dx.doi.org/10.3847/1538-4357/ac2c7a.
Texto completoKocharov, L. G., G. A. Kovaltsov, G. E. Kocharov, E. I. Chuikin, I. G. Usoskin, M. A. Shea, D. F. Smart et al. "Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleraton of relativistic particles". Solar Physics 150, n.º 1-2 (marzo de 1994): 267–83. http://dx.doi.org/10.1007/bf00712889.
Texto completoD’Arcy, R., J. Chappell, J. Beinortaite, S. Diederichs, G. Boyle, B. Foster, M. J. Garland et al. "Recovery time of a plasma-wakefield accelerator". Nature 603, n.º 7899 (2 de marzo de 2022): 58–62. http://dx.doi.org/10.1038/s41586-021-04348-8.
Texto completoPapini, Giorgio. "Maximal acceleration and radiative processes". Modern Physics Letters A 30, n.º 31 (14 de septiembre de 2015): 1550166. http://dx.doi.org/10.1142/s0217732315501667.
Texto completoTesis sobre el tema "Acceleraton of particles"
Waldman, Zachary J. "Majorana Neutrinos in the Jacob-Wick phase convention". Diss., Online access via UMI:, 2008.
Buscar texto completoVerhagen, Erik. "Development of the new trigger and data acquisition system for the CMS forward muon spectrometer upgrade". Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209110.
Texto completoAfin d'affiner encore notre connaissance des processus mis en jeu lors collision de particules dans CMS, une mise à niveau du détecteur est prévue avant la fin de cette décennie. Certains sous-détecteurs actuellement installés, et notamment le spectromètre à muon dans la zone des bouchons, sont d’ores et déjà identifiés comme offrant des performances trop faibles pour l'augmentation du nombres d’événements prévu après cette mise à jour. Ce travail propose de réaliser une étude de faisabilité sur l'utilisation d'une technologie alternative pour ce sous-détecteur, notamment le Triple-GEM, pour combler ces limitations.
Une première partie de ce travail consiste en l'étude de cette nouvelle technologie de détecteur à gaz. Cependant, la mise en œuvre de cette technologie conduit à des modifications dans le système d'acquisition de données de CMS. La situation actuelle puis les implications d'un point de vue technique des modifications sont donc détaillées par la suite. Enfin, après avoir identifié les composants et les solutions permettant la collecte de résultats à l’échelle de l'ensemble du sous-détecteur, un système d'acquisition de données similaire a été réalisé et est décrit dans une dernière partie de ce travail.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Johnson, Samantha. "Optimizing the ion source for polarized protons". Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Texto completoWeathersby, Stephen. "Damping higher order modes in the PEP-II B-factory storage ring collider". Diss., Connect to online resource - MSU authorized users, 2007.
Buscar texto completoTitle from PDF t.p. (viewed on August 18, 2009) Includes bibliographic references (p. 175-179). Also issued in print.
Williams, Logan Todd. "Ion acceleration mechanisms of helicon thrusters". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47691.
Texto completoLinz, Thomas M. "Self-Force on Accelerated Particles". Thesis, The University of Wisconsin - Milwaukee, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3712619.
Texto completoThe likelihood that gravitational waves from stellar-size black holes spiraling into a supermassive black hole would be detectable by a space based gravitational wave observatory has spurred the interest in studying the extreme mass-ratio inspiral (EMRI) problem and black hole perturbation theory (BHP). In this approach, the smaller black hole is treated as a point particle and its trajectory deviates from a geodesic due to the interaction with its own field. This interaction is known as the gravitational self-force, and it includes both a damping force, commonly known as radiation reaction, as well as a conservative force. The computation of this force is complicated by the fact that the formal expression for the force due to a point particle diverges, requiring a careful regularization to find the finite self-force.
This dissertation focuses on the computation of the scalar, electromagnetic and gravitational self-force on accelerated particles. We begin with a discussion of the "MiSaTaQuWa" prescription for self-force renormalization (Mino, Sasaki, Takasugi 1999 and Quinn and Wald, 1999) along with the refinements made by Detweiler and Whiting (2003), and demonstrate how this prescription is equivalent to performing an angle average and renormalizing the mass of the particle. With this background, we shift to a discussion of the "mode-sum renormalization" technique developed by Barack and Ori (2000), who demonstrated that for particles moving along a geodesic in Schwarzschild spacetime (and later in Kerr spacetime), the regularization parameters can be described using only the leading and subleading terms (known as the A and B terms). We extend this to demonstrate that this is true for fields of spins 0, 1, and 2, for accelerated trajectories in arbitrary spacetimes.
Using these results, we discuss the renormalization of a charged point mass moving through an electrovac spacetime; extending previous studies to situations in which the gravitational and electromagnetic contributions are comparable. We renormalize by using the angle average plus mass renormalization in order to find the contribution from the coupling of the fields and encounter a striking result: Due to a remarkable cancellation, the coupling of the fields does not contribute to the renormalization. This means that the renormalized mass is obtained by subtracting (1) the purely electromagnetic contribution from a point charge moving along an accelerated trajectory and (2) the purely gravitational contribution of an electrically neutral point mass moving along the same trajectory. In terms of the mode-sum regularization, the same cancellation implies that the regularization parameters are merely the sums of their purely electromagnetic and gravitational values.
Finally, we consider the scalar self-force on a point charge orbiting a Schwarzschild black-hole following a non-Keplerian circular orbit. We utilize the techniques of Mano, Suzuki, and Takasugi (1996) for generating analytic solutions. With this tool, it is possible to generate a solution for the field as a series in the Fourier frequency, which allows researchers to naturally express the solutions in a post Newtonian series (see Shah et. al. 2014). We make use of a powerful insight by Hikida et. al.(2005), which allows us to perform the renormalization analytically. We investigate the details of this procedure and illuminate the mechanisms through which it works. We finish by demonstrating the power of this technique, showing how it is possible to obtain the post Newtonian expressions by only explicitly computing a handful of modes.
Alton, Andrew K. "Evidence for the existence of jets in photon-parton interaction events at center of mass energies from 18 to 28 GEV". Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/1014850.
Texto completoDepartment of Physics and Astronomy
Hosack, Michael G. "Optimization of particle tracking for experiment E683 at Fermi National Laboratory". Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/941370.
Texto completoDepartment of Physics and Astronomy
Guo, Fan. "Effects of Turbulent Magnetic Fields on the Transport and Acceleration of Energetic Charged Particles: Numerical Simulations with Application to Heliospheric Physics". Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/255156.
Texto completoRosencranz, Daniela Necsoiu. "Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator". Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3077/.
Texto completoLibros sobre el tema "Acceleraton of particles"
CERN Accelerator School Superconductivity in Particle Accelerators (1995 Haus Rissen, Hamburg, Germany). CAS, CERN Accelerator School Superconductivity in Particle Accelerators: Haus Rissen, Hamburg, Germany, 17-24 May 1995 : proceedings. Editado por Turner S. 1935- y European Organization for Nuclear Research. Geneva: CERN, European Organization for Nuclear Research, 1996.
Buscar texto completoPrinciples of charged particle acceleration. New York: J. Wiley, 1986.
Buscar texto completoKlapdor-Kleingrothaus, H. V. Non-accelerator particle physics. Bristol: Institute of Physics Pub., 1998.
Buscar texto completoNon-accelerator particle physics. Bristol: Institute of Physics Pub., 1995.
Buscar texto completoEdwards, D. A. An introduction to the physics of high energy accelerators. New York: Wiley, 1993.
Buscar texto completoBlondel, Alain. ECFA/CERN studies of a European neutrino factory complex. Geneva: CERN, 2004.
Buscar texto completoLee, S. Y. Accelerator physics. 3a ed. Hackensack, NJ: World Scientific, 2012.
Buscar texto completoWiedemann, Helmut. Particle Accelerator Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02903-9.
Texto completoWiedemann, Helmut. Particle Accelerator Physics. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18317-6.
Texto completoWiedemann, Helmut. Particle Accelerator Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05034-7.
Texto completoCapítulos de libros sobre el tema "Acceleraton of particles"
Otto, Thomas. "Risks and Hazards of Particle Accelerator Technologies". En Safety for Particle Accelerators, 5–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57031-6_2.
Texto completoSeeman, J., D. Schulte, J. P. Delahaye, M. Ross, S. Stapnes, A. Grudiev, A. Yamamoto et al. "Design and Principles of Linear Accelerators and Colliders". En Particle Physics Reference Library, 295–336. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_7.
Texto completoMinty, Michiko G. y Frank Zimmermann. "Introduction". En Particle Acceleration and Detection, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_1.
Texto completoMinty, Michiko G. y Frank Zimmermann. "Collimation". En Particle Acceleration and Detection, 141–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_6.
Texto completoReames, Donald V. "Gradual SEP Events". En Solar Energetic Particles, 97–133. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66402-2_5.
Texto completoOtto, Thomas. "Industrial Safety at Particle Accelerators". En Safety for Particle Accelerators, 83–116. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57031-6_4.
Texto completoBrugger, M., H. Burkhardt, B. Goddard, F. Cerutti y R. G. Alia. "Interactions of Beams with Surroundings". En Particle Physics Reference Library, 183–203. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_5.
Texto completoReames, Donald V. "Distinguishing the Sources". En Solar Energetic Particles, 49–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66402-2_3.
Texto completoMinty, Michiko G. y Frank Zimmermann. "Cooling". En Particle Acceleration and Detection, 263–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_11.
Texto completoVlahos, L., M. E. Machado, R. Ramaty, R. J. Murphy, C. Alissandrakis, T. Bai, D. Batchelor et al. "Particle Acceleration". En Energetic Phenomena on the Sun, 127–224. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2331-7_2.
Texto completoActas de conferencias sobre el tema "Acceleraton of particles"
Kotaki, H., K. Nakajima, M. Kando, H. Ahn, T. Watanabe, T. Ueda, M. Uesaka et al. "Laser Wakefield Acceleration Experiments". En Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the24.
Texto completoJen, Tien-Chien, Longjian Li, Qinghua Chen, Wenzhi Cui y Xinming Zhang. "The Acceleration of Micro- and Nano-Particles in Supersonic De-Laval-Type Nozzle". En ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42583.
Texto completoFukanuma, H., N. Ohno, B. Sun y R. Huang. "The Influence of Particle Morphology on In-flight Particle Velocity in Cold Spray". En ITSC2006, editado por B. R. Marple, M. M. Hyland, Y. C. Lau, R. S. Lima y J. Voyer. ASM International, 2006. http://dx.doi.org/10.31399/asm.cp.itsc2006p0097.
Texto completoYagami, Hisanori y Tomomi Uchiyama. "Vortex Simulation for Behavior of Solid Particles Falling in Air". En ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-12019.
Texto completoHan, T., W. Li, X. Guo y X. Yang. "Design of Cold Spray Nozzle to Optimize the Particle Velocity by Numerical Simulation". En ITSC2017, editado por A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen y C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0595.
Texto completoLeitz, K. H., M. O’Sullivan, A. Plankensteiner, H. Kestler y L. S. Sigl. "Open FOAM Modelling of Particle Heating and Acceleration in Cold Spraying". En ITSC2017, editado por A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen y C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0589.
Texto completoAfanasiev, A. V., I. V. Bandurkin, A. M. Gorbachev, K. V. Mineev, N. Yu Peskov, A. V. Savilov y A. A. Vikharev. "Development of photoinjector in IAP RAS". En 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.s1-p-038101.
Texto completoAkin, Semih, Puyuan Wu, Chandra Nath, Jun Chen y Martin Byung-Guk Jun. "A Study on the Effect of Nozzle Geometrical Parameters on Supersonic Cold Spraying of Droplets". En ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-85703.
Texto completoOlson, C. L., C. A. Frost, E. L. Patterson, J. P. Anthes y J. W. Poukey. "Ionization front accelerator: High gradients, demonstrated particle acceleration, and a proposed relativistic accelerator". En AIP Conference Proceedings Volume 130. AIP, 1985. http://dx.doi.org/10.1063/1.35281.
Texto completoLi, Longjian, Qinghua Chen, Wenzhi Cui, Tien-Chien Jen, Yi-Hsin Yen, Quan Liao y Lin Zhu. "The Effects of the Distance Between Nozzle and Substrate on Cold Gas Dynamic Spray Process". En ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10501.
Texto completoInformes sobre el tema "Acceleraton of particles"
Pullammanappallil, Pratap, Haim Kalman y Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, enero de 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Texto completoSteinberg, R. I. y C. E. Lane. Non-accelerator particle physics. Office of Scientific and Technical Information (OSTI), septiembre de 1991. http://dx.doi.org/10.2172/5043726.
Texto completoGuo, Fan. Particle acceleration/energization during reconnection. Office of Scientific and Technical Information (OSTI), enero de 2017. http://dx.doi.org/10.2172/1340946.
Texto completoDimits, A. M. y J. A. Krommes. Stochastic particle acceleration and statistical closures. Office of Scientific and Technical Information (OSTI), octubre de 1985. http://dx.doi.org/10.2172/5111904.
Texto completoGuo, Fan. Nonthermal Particle Acceleration in Magnetic Reconnection. Office of Scientific and Technical Information (OSTI), marzo de 2017. http://dx.doi.org/10.2172/1345962.
Texto completoMosko, S. (Power converters for particle accelerators). Office of Scientific and Technical Information (OSTI), abril de 1990. http://dx.doi.org/10.2172/6948922.
Texto completoOgitsu, T., A. Devred y K. Kim. Quench antenna for superconducting particle accelerator magnets. Office of Scientific and Technical Information (OSTI), octubre de 1993. http://dx.doi.org/10.2172/91952.
Texto completoBirn, J., J. E. Borovsky, M. F. Thomsen, D. J. McComas, G. D. Reeves, R. D. Belian, M. Hesse y K. Schindler. Particle acceleration from reconnection in the geomagnetic tail. Office of Scientific and Technical Information (OSTI), agosto de 1997. http://dx.doi.org/10.2172/522543.
Texto completoGuo, Fan. Relativistic Magnetic Reconnection: A Powerful Cosmic Particle Accelerator. Office of Scientific and Technical Information (OSTI), octubre de 2014. http://dx.doi.org/10.2172/1159566.
Texto completoBhat, Chandrashekara. Particle Accelerators at the Intensity Frontier for Elementary Particle Physics Research. Office of Scientific and Technical Information (OSTI), enero de 2023. http://dx.doi.org/10.2172/1922104.
Texto completo