Literatura académica sobre el tema "Accélération méthodes à noyaux"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Accélération méthodes à noyaux".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Accélération méthodes à noyaux"
Faucher, D., P. F. Rasmussen y B. Bobée. "Estimation non paramétrique des quantiles de crue par la méthode des noyaux". Revue des sciences de l'eau 15, n.º 2 (12 de abril de 2005): 515–41. http://dx.doi.org/10.7202/705467ar.
Texto completoVincent, Patrick y Andre Roger. "Accélération des méthodes de gradient utilisées pour 1’optimisation des antennes filaires". Annals of Telecommunications 43, n.º 5-6 (mayo de 1988): 251–55. http://dx.doi.org/10.1007/bf02995085.
Texto completoHOUDEBINE, L. M. "Les manipulations génétiques : comment améliorer la croissance". INRAE Productions Animales 3, n.º 3 (4 de julio de 1990): 207–14. http://dx.doi.org/10.20870/productions-animales.1990.3.3.4377.
Texto completoDjité, Paulin G. "Correcting Errors in Language Classification". Language Problems and Language Planning 12, n.º 1 (1 de enero de 1988): 1–13. http://dx.doi.org/10.1075/lplp.12.1.01dji.
Texto completoBOLET, G. y L. BODIN. "Les objectifs et les critères de sélection : Sélection de la fécondité dans les espèces domestiques". INRAE Productions Animales 5, HS (2 de diciembre de 1992): 129–34. http://dx.doi.org/10.20870/productions-animales.1992.5.hs.4276.
Texto completoMogwo, Patrick Sendeke, Justin Esimo Mboloko, Eloge Mbaya Ilunga y Arsène Lobota Mputu. "Gyneco obstetrical outcomes after abdominal myomectomy in a Congolese setting population, in the Democratic Republic of the Congo". Annales Africaines de Medecine 16, n.º 3 (22 de junio de 2023): 5179–89. http://dx.doi.org/10.4314/aamed.v16i3.4.
Texto completoPasset, Olivier, Christine Rifflart y Henri Sterdyniak. "Ralentissement de la croissance potentielle et hausse du chômage". Revue de l'OFCE 60, n.º 1 (1 de enero de 1997): 109–46. http://dx.doi.org/10.3917/reof.p1997.60n1.0109.
Texto completoSAUVANT, D. "Avant-propos". INRAE Productions Animales 14, n.º 5 (17 de diciembre de 2001): 283. http://dx.doi.org/10.20870/productions-animales.2001.14.5.3752.
Texto completoVandevelde, Anaïs, Lucie Métivier y Sonia Dollfus. "Impact cérébral structurel et fonctionnel de la Clozapine chez les patients souffrant de schizophrénie : revue systématique des études longitudinales en neuroimagerie: Structural and functional impact of clozapine in patients with schizophrenia: systematic review of neuroimaging longitudinal studies". Canadian Journal of Psychiatry, 2 de noviembre de 2020, 070674372096645. http://dx.doi.org/10.1177/0706743720966459.
Texto completoAdministrateur- JAIM, DIOP Abdoulaye Dione, NIANG Fallou Galass, AIDARA Chérif Mouhamadou, TOURE kamador, DIOP Abdoulaye Ndoye y BA Sokhna. "Forme familiale d’atrophie multi-systématisée : apport de l’imagerie par résonnance magnétique". Journal Africain d'Imagerie Médicale (J Afr Imag Méd). Journal Officiel de la Société de Radiologie d’Afrique Noire Francophone (SRANF). 14, n.º 3 (19 de diciembre de 2022). http://dx.doi.org/10.55715/jaim.v14i3.394.
Texto completoTesis sobre el tema "Accélération méthodes à noyaux"
Cherfaoui, Farah. "Echantillonnage pour l'accélération des méthodes à noyaux et sélection gloutonne pour les représentations parcimonieuses". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0256.
Texto completoThe contributions of this thesis are divided into two parts. The first part is dedicated to the acceleration of kernel methods and the second to optimization under sparsity constraints. Kernel methods are widely known and used in machine learning. However, the complexity of their implementation is high and they become unusable when the number of data is large. We first propose an approximation of Ridge leverage scores. We then use these scores to define a probability distribution for the sampling process of the Nyström method in order to speed up the kernel methods. We then propose a new kernel-based framework for representing and comparing discrete probability distributions. We then exploit the link between our framework and the maximum mean discrepancy to propose an accurate and fast approximation of the latter. The second part of this thesis is devoted to optimization with sparsity constraint for signal optimization and random forest pruning. First, we prove under certain conditions on the coherence of the dictionary, the reconstruction and convergence properties of the Frank-Wolfe algorithm. Then, we use the OMP algorithm to reduce the size of random forests and thus reduce the size needed for its storage. The pruned forest consists of a subset of trees from the initial forest selected and weighted by OMP in order to minimize its empirical prediction error
Loosli, Gaëlle. "Méthodes à noyaux pour la détection de contexte : vers un fonctionnement autonome des méthodes à noyaux". Rouen, INSA, 2006. http://www.theses.fr/2006ISAM0009.
Texto completoLoustau, Sébastien. "Performances statistiques de méthodes à noyaux". Phd thesis, Université de Provence - Aix-Marseille I, 2008. http://tel.archives-ouvertes.fr/tel-00343377.
Texto completoLes méthodes de régularisation ont montrées leurs intérêts pour résoudre des problèmes de classification. L'algorithme des Machines à Vecteurs de Support (SVM) est aujourd'hui le représentant le plus populaire. Dans un premier temps, cette thèse étudie les performances statistiques de cet algorithme, et considère le problème d'adaptation à la marge et à la complexité. On étend ces résultats à une nouvelle procédure de minimisation de risque empirique pénalisée sur les espaces de Besov. Enfin la dernière partie se concentre sur une nouvelle procédure de sélection de modèles : la minimisation de l'enveloppe du risque (RHM). Introduite par L.Cavalier et Y.Golubev dans le cadre des problèmes inverses, on cherche à l'appliquer au contexte de la classification.
Belley, Philippe. "Noyaux discontinus et méthodes sans maillage en hydrodynamique". Mémoire, Université de Sherbrooke, 2007. http://savoirs.usherbrooke.ca/handle/11143/4815.
Texto completoBietti, Alberto. "Méthodes à noyaux pour les réseaux convolutionnels profonds". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM051.
Texto completoThe increased availability of large amounts of data, from images in social networks, speech waveforms from mobile devices, and large text corpuses, to genomic and medical data, has led to a surge of machine learning techniques. Such methods exploit statistical patterns in these large datasets for making accurate predictions on new data. In recent years, deep learning systems have emerged as a remarkably successful class of machine learning algorithms, which rely on gradient-based methods for training multi-layer models that process data in a hierarchical manner. These methods have been particularly successful in tasks where the data consists of natural signals such as images or audio; this includes visual recognition, object detection or segmentation, and speech recognition.For such tasks, deep learning methods often yield the best known empirical performance; yet, the high dimensionality of the data and large number of parameters of these models make them challenging to understand theoretically. Their success is often attributed in part to their ability to exploit useful structure in natural signals, such as local stationarity or invariance, for instance through choices of network architectures with convolution and pooling operations. However, such properties are still poorly understood from a theoretical standpoint, leading to a growing gap between the theory and practice of machine learning. This thesis is aimed towards bridging this gap, by studying spaces of functions which arise from given network architectures, with a focus on the convolutional case. Our study relies on kernel methods, by considering reproducing kernel Hilbert spaces (RKHSs) associated to certain kernels that are constructed hierarchically based on a given architecture. This allows us to precisely study smoothness, invariance, stability to deformations, and approximation properties of functions in the RKHS. These representation properties are also linked with optimization questions when training deep networks with gradient methods in some over-parameterized regimes where such kernels arise. They also suggest new practical regularization strategies for obtaining better generalization performance on small datasets, and state-of-the-art performance for adversarial robustness on image tasks
Suard, Frédéric. "Méthodes à noyaux pour la détection de piétons". Phd thesis, INSA de Rouen, 2006. http://tel.archives-ouvertes.fr/tel-00375617.
Texto completoSuard, Frédéric. "Méthodes à noyaux pour la détection de piétons". Phd thesis, Rouen, INSA, 2006. http://www.theses.fr/2006ISAM0024.
Texto completoSadok, Hassane. "Accélération de la convergence de suites vectorielles et méthodes de point fixe". Lille 1, 1988. http://www.theses.fr/1988LIL10146.
Texto completoPothin, Jean-Baptiste. "Décision par méthodes à noyaux en traitement du signal : techniques de sélection et d'élaboration de noyaux adaptés". Troyes, 2007. http://www.theses.fr/2007TROY0016.
Texto completoAmong the large family of kernel methods, one should admit that, up to now, research was guided by applications, neglecting the study of the kernels themselves. This observations of particularly surprising since these later determine the performance of the machine by their ability to reveal similarities between data samples. The main objective of this thesis is to provide a methodology for the design of data-dependant kernels. The first part of this manuscript is about kernel learning. We study the problem consisting in optimizing the free parameters of several well-known kernel families. We propose a greedy algorithm for learning a linear combination of kernels without training any kernel machine at each step. The improved kernel is then used to train a standard SVM classifier. Applications in regression are also presented. In the second part, we develop methods for data representation learning. We propose an algorithm for maximizing the alignment over linear transform of the input space, which suppose vectorial representation of the data. To deal with the so-called curse of dimensionality, we suggest to learn data representation by distance metric learning. This approach can be used to optimize efficiently any reproducing kernel Hilbert space. We show its application in a text classification context. The last part concerns the use of prior information in the form of ellipsoidal knowledge sets. By considering bounding ellipsoids instead of the usual sample vectors, one can include into SVM invariance properties
Tawk, Melhem. "Accélération de la simulation par échantillonnage dans les architectures multiprocesseurs embarquées". Valenciennes, 2009. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/860a8e09-e347-4f85-83bd-d94ca890483d.
Texto completoEmbedded system design relies heavily on simulation to evaluate and validate new platforms before implementation. Nevertheless, as technological advances allow the realization of more complex circuits, simulation time of these systems is considerably increasing. This problem arises mostly in the case of embedded multiprocessor architectures (MPSoC) which offer high performances (in terms of instructions/Joule) but which require powerful simulators. For such systems, simultion should be accelerated in order to speed up their design flow thus reducing the time-to-market. In this thesis, we proposed a series of solutions aiming at accelerating the simulation of MPSoC. The proposed methods are based on application sampling. Thus, the parallel applications are first analyzed in order to detect the different phases which compose them. Thereafter and during the simulation, the phases executed in parallel are combined together in order to generate clusters of phases. We developed techniques that facilitate generating clusters, detecting repeated ones and recording their statistics in an efficient way. Each cluster represents a sample of similar execution intervals of the application. The detection of these similar intervals saves us simulating several times the same sample. To reduce the number of clusters in the applications and to increase the occurrence number of simulated clusters, an optimization of the method was proposed to dynamically adapt phase size of the applications. This makes it possible to easily detect the scenarios of the executed clusters when a repetition in the behavior of the applications takes place. Finally, to make our methodology viable in an MPSoC design environment, we proposed efficient techniques to construct the real system state at the simulation starting point (checkpoint) of the cluster
Capítulos de libros sobre el tema "Accélération méthodes à noyaux"
MARIETTE, Jérôme y Nathalie VIALANEIX. "Des noyaux pour les omiques". En Intégration de données biologiques, 165–210. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9030.ch6.
Texto completo