Índice
Literatura académica sobre el tema "ABCE1 biogenesis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "ABCE1 biogenesis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "ABCE1 biogenesis"
Yu, Qian, Xu Han y Da-Li Tian. "Deficiency of Functional Iron-Sulfur Domains in ABCE1 Inhibits the Proliferation and Migration of Lung Adenocarcinomas By Regulating the Biogenesis of Beta-Actin In Vitro". Cellular Physiology and Biochemistry 44, n.º 2 (2017): 554–66. http://dx.doi.org/10.1159/000485090.
Texto completoKey, Jana, Nesli Ece Sen, Aleksandar Arsović, Stella Krämer, Robert Hülse, Natasha Nadeem Khan, David Meierhofer, Suzana Gispert, Gabriele Koepf y Georg Auburger. "Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence". Cells 9, n.º 10 (2 de octubre de 2020): 2229. http://dx.doi.org/10.3390/cells9102229.
Texto completoNürenberg-Goloub, Elina y Robert Tampé. "Ribosome recycling in mRNA translation, quality control, and homeostasis". Biological Chemistry 401, n.º 1 (18 de diciembre de 2019): 47–61. http://dx.doi.org/10.1515/hsz-2019-0279.
Texto completoYokoyama, Shinji. "ABCA1 and Biogenesis of HDL". Journal of Atherosclerosis and Thrombosis 13, n.º 1 (2006): 1–15. http://dx.doi.org/10.5551/jat.13.1.
Texto completoWang, Shuhui y Jonathan D. Smith. "ABCA1 and nascent HDL biogenesis". BioFactors 40, n.º 6 (30 de octubre de 2014): 547–54. http://dx.doi.org/10.1002/biof.1187.
Texto completoYokoyama, Shinji, Reijiro Arakawa, Cheng-ai Wu, Noriyuki Iwamoto, Rui Lu, Maki Tsujita y Sumiko Abe-Dohmae. "Calpain-mediated ABCA1 degradation: Post-translational regulation of ABCA1 for HDL biogenesis". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1821, n.º 3 (marzo de 2012): 547–51. http://dx.doi.org/10.1016/j.bbalip.2011.07.017.
Texto completoWang, Jing, Qianqian Xiao, Luyun Wang, Yan Wang, Daowen Wang y Hu Ding. "Role of ABCA1 in Cardiovascular Disease". Journal of Personalized Medicine 12, n.º 6 (20 de junio de 2022): 1010. http://dx.doi.org/10.3390/jpm12061010.
Texto completoBrunham, L. R. "Intestinal ABCA1 directly contributes to HDL biogenesis in vivo". Journal of Clinical Investigation 116, n.º 4 (23 de marzo de 2006): 1052–62. http://dx.doi.org/10.1172/jci27352.
Texto completoGao, Jie, Yanni Xu, Yuan Yang, Yi Yang, Zhihui Zheng, Wei Jiang, Bin Hong, Xuguang Yan y Shuyi Si. "Identification of Upregulators of Human ATP-Binding Cassette Transporter A1 via High-Throughput Screening of a Synthetic and Natural Compound Library". Journal of Biomolecular Screening 13, n.º 7 (1 de julio de 2008): 648–56. http://dx.doi.org/10.1177/1087057108320545.
Texto completoLi, Li, Rongwen Li, Alex Zacharek, Fengjie Wang, Julie Landschoot-Ward, Michael Chopp, Jieli Chen y Xu Cui. "ABCA1/ApoE/HDL Signaling Pathway Facilitates Myelination and Oligodendrogenesis after Stroke". International Journal of Molecular Sciences 21, n.º 12 (19 de junio de 2020): 4369. http://dx.doi.org/10.3390/ijms21124369.
Texto completoTesis sobre el tema "ABCE1 biogenesis"
Sims, Lynn. "Biochemical Studies of ABCE1". Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5501.
Texto completoPh.D.
Doctorate
Biology
Sciences
Biomedical Sciences
Camponeschi, Francesca, Sabine Annemarie Elisabeth Heider, Simone Ciofi-Baffoni y Lucia Banci. "Characterization of pathways for the Fe-S protein biogenesis in the human cytoplasm". Doctoral thesis, 2020. http://hdl.handle.net/2158/1217050.
Texto completoLiu, Minjing. "Structural studies of apolipoprotein A-I and ATP-binding cassette A1 and their roles in nascent high density lipoprotein biogenesis". Thesis, 2017. https://hdl.handle.net/2144/20807.
Texto completoΠετροπούλου, Περιστέρα-Ιωάννα. "Μελέτη των περιοχών της απολιποπρωτεΐνης Ε που διαμεσολαβούν τη de novo βιοσύνθεση HDL σε πειραματικά μοντέλα ποντικών". Thesis, 2011. http://hdl.handle.net/10889/5014.
Texto completoHDL is a mixture of high density lipoprotein particles that depending on the lipid composition may be discoidal or spherical. The main atheroprotective property of HDL is reverse cholesterol transport, a process that unloads excess cholesterol from peripheral tissues and transports it to the liver for catabolism. HDL has also anti-inflammatory and antioxidant properties. The main protein of HDL is apolipoprotein A-I (apoA-I). However, recently it was shown that in the absence of apoA-I and consequently classical HDL, apolipoprotein E (apoE) interacts functionally with the lipid transporter ABCA1, promoting the de novo synthesis of HDL-like particles. The present study focused on the identification of the domain of apoE that is responsible for the functional interaction with ABCA1 and the formation of apoE-containing HDL. Recombinant attenuated adenoviruses expressing carboxy-terminal truncated forms of apoE4 (apoE4[1-259], apoE4[1-229], apoE4[1-202], and apoE4[1-185]) were administered to apoA-I-deficient mice at a low dose of 8x108 pfu and five days post-infection plasma samples were isolated and analyzed for HDL formation. Fractionation of plasma lipoproteins of the infected mice by density gradient ultracentrifugation and FPLC revealed that all forms were capable of promoting HDL formation. Negative staining electron microscopy analysis of the HDL density fractions confirmed that all C-terminal truncated forms of apoE4 promoted the formation of particles with diameters in the HDL region. Taken together, these data establish that the aminoterminal 1 to 185 region of apoE suffices for the formation of HDL particles in vivo. These findings may have important ramifications in the design of apoE-based biological drugs for the treatment of dyslipidemia, atherosclerosis and coronary heart disease.