Literatura académica sobre el tema "A priori data"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "A priori data".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "A priori data"
Filippidis, A. "Data fusion using sensor data and a priori information". Control Engineering Practice 4, n.º 1 (enero de 1996): 43–53. http://dx.doi.org/10.1016/0967-0661(95)00205-x.
Texto completoPankov, A. R. y A. M. Skuridin. "Data Processing Under A Priori Statistical Uncertainty". IFAC Proceedings Volumes 19, n.º 5 (mayo de 1986): 213–17. http://dx.doi.org/10.1016/s1474-6670(17)59796-7.
Texto completoRoberts, R. A. "51458 Limited data tomography using support minimization with a priori data". NDT & E International 27, n.º 2 (abril de 1994): 105–6. http://dx.doi.org/10.1016/0963-8695(94)90364-6.
Texto completoMcKee, B. T. A. "Deconvolution of noisy data using a priori constraints". Canadian Journal of Physics 67, n.º 8 (1 de agosto de 1989): 821–26. http://dx.doi.org/10.1139/p89-142.
Texto completoLestari, Putri Anggraini, Marnis Nasution y Syaiful Zuhri Harahap. "Analisa Data Penjualan Pada Apotek Ritonga Farma Menggunakan Data Mining Apriori". INFORMATIKA 12, n.º 2 (14 de diciembre de 2024): 180–89. https://doi.org/10.36987/informatika.v12i2.5651.
Texto completoYi, Guodong, Chuanyuan Zhou, Yanpeng Cao y Hangjian Hu. "Hybrid Assembly Path Planning for Complex Products by Reusing a Priori Data". Mathematics 9, n.º 4 (17 de febrero de 2021): 395. http://dx.doi.org/10.3390/math9040395.
Texto completoPeysson, Flavien, Abderrahmane Boubezoul, Mustapha Ouladsine y Rachid Outbib. "A Data Driven Prognostic Methodology without a Priori Knowledge". IFAC Proceedings Volumes 42, n.º 8 (2009): 1462–67. http://dx.doi.org/10.3182/20090630-4-es-2003.00238.
Texto completoMenon, Nanda K. y John A. Hunt. "Optimizing EELS data sets using ‘a priori’ spectrum simulation". Microscopy and Microanalysis 8, S02 (agosto de 2002): 620–21. http://dx.doi.org/10.1017/s1431927602106040.
Texto completoSuhadi, Suhadi, Carsten Last y Tim Fingscheidt. "A Data-Driven Approach to A Priori SNR Estimation". IEEE Transactions on Audio, Speech, and Language Processing 19, n.º 1 (enero de 2011): 186–95. http://dx.doi.org/10.1109/tasl.2010.2045799.
Texto completoNasari, Fina Nasari. "Algoritma A Priori Dalam Pengelompokkan Data Pendaftaran Mahasiswa Baru". Jurnal Sains dan Ilmu Terapan 4, n.º 1 (1 de julio de 2021): 40–45. http://dx.doi.org/10.59061/jsit.v4i1.102.
Texto completoTesis sobre el tema "A priori data"
SALAS, PERCY ENRIQUE RIVERA. "STDTRIP: AN A PRIORI DESIGN PROCESS FOR PUBLISHING LINKED DATA". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28907@1.
Texto completoCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
A abordagem de Dados Abertos tem como objetivo promover a interoperabilidade de dados na Web. Consiste na publicação de informações em formatos que permitam seu compartilhamento, descoberta, manipulação e acesso por parte de usuários e outros aplicativos de software. Essa abordagem requer a triplificação de conjuntos de dados, ou seja, a conversão do esquema de bases de dados relacionais, bem como suas instâncias, em triplas RDF. Uma questão fundamental neste processo é decidir a forma de representar conceitos de esquema de banco de dados em termos de classes e propriedades RDF. Isto é realizado através do mapeamento das entidades e relacionamentos para um ou mais vocabulários RDF, usados como base para a geração das triplas. A construção destes vocabulários é extremamente importante, porque quanto mais padrões são utilizados, melhor o grau de interoperabilidade com outros conjuntos de dados. No entanto, as ferramentas disponíveis atualmente não oferecem suporte adequado ao reuso de vocabulários RDF padrão no processo de triplificação. Neste trabalho, apresentamos o processo StdTrip, que guia usuários no processo de triplificação, promovendo o reuso de vocabulários de forma a assegurar interoperabilidade dentro do espaço da Linked Open Data (LOD).
Open Data is a new approach to promote interoperability of data in the Web. It consists in the publication of information produced, archived and distributed by organizations in formats that allow it to be shared, discovered, accessed and easily manipulated by third party consumers. This approach requires the triplification of datasets, i.e., the conversion of database schemata and their instances to a set of RDF triples. A key issue in this process is deciding how to represent database schema concepts in terms of RDF classes and properties. This is done by mapping database concepts to an RDF vocabulary, used as the base for generating the triples. The construction of this vocabulary is extremely important, because the more standards are reused, the easier it will be to interlink the result to other existing datasets. However, tools available today do not support reuse of standard vocabularies in the triplification process, but rather create new vocabularies. In this thesis, we present the StdTrip process that guides users in the triplification process, while promoting the reuse of standard, RDF vocabularies.
Egidi, Leonardo. "Developments in Bayesian Hierarchical Models and Prior Specification with Application to Analysis of Soccer Data". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3427270.
Texto completoNegli ultimi anni la sfida per la specificazione di nuove distribuzioni a priori e per l’uso di complessi modelli gerarchici è diventata ancora più rilevante all’interno dell’inferenza Bayesiana. L’avvento delle tecniche Markov Chain Monte Carlo, insieme a nuovi linguaggi di programmazione probabilistici, ha esteso i confini del campo, sia in direzione teorica che applicata. Nella presente tesi ci dedichiamo a obiettivi teorici e applicati. Nella prima parte proponiamo una nuova classe di distribuzioni a priori che dipendono dai dati e che sono specificate tramite una mistura tra una a priori non informativa e una a priori informativa. La generica distribuzione appartenente a questa nuova classe fornisce meno informazione di una priori informativa e si candida a non dominare le conclusioni inferenziali quando la dimensione campionaria è piccola o moderata. Tale distribuzione `e idonea per scopi di robustezza, specialmente in caso di scorretta specificazione della distribuzione a priori informativa. Alcuni studi di simulazione all’interno di modelli coniugati mostrano che questa proposta può essere conveniente per ridurre gli errori quadratici medi e per migliorare la copertura frequentista. Inoltre, sotto condizioni non restrittive, questa classe di distribuzioni d`a luogo ad alcune altre interessanti proprietà teoriche. Nella seconda parte della tesi usiamo la classe dei modelli gerarchici Bayesiani per prevedere alcune grandezze relative al gioco del calcio ed estendiamo l’usuale modellazione per i goal includendo nel modello un’ulteriore informazione proveniente dalle case di scommesse. Strumenti per sondare a posteriori la bontà di adattamento del modello ai dati mettono in luce un’ottima aderenza del modello ai dati in possesso, una buona calibrazione dello stesso e suggeriscono, infine, la costruzione di efficienti strategie di scommesse per dati futuri.
Tan, Rong Kun Jason. "Scalable Data-agnostic Processing Model with a Priori Scheduling for the Cloud". Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/75449.
Texto completoBussy, Victor. "Integration of a priori data to optimise industrial X-ray tomographic reconstruction". Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0116.
Texto completoThis thesis explores research topics in the field of industrial non-destructive testing (NDT) using X-rays. The application of CT tomography has significantly expanded, and its use has intensified across many industrial sectors. Due to increasing demands and constraints on inspection processes, CT must continually evolve and adapt. Whether in terms of reconstruction quality or inspection time, X-ray tomography is constantly progressing, particularly in the so-called sparse-view strategy. This strategy involves reconstructing an object using the minimum possible number of radiographic projections while maintaining satisfactory reconstruction quality. This approach reduces acquisition times and associated costs. Sparse-view reconstruction poses a significant challenge as the tomographic problem is ill-conditioned, or, as it is often described, ill-posed. Numerous techniques have been developed to overcome this obstacle, many of which rely on leveraging prior information during the reconstruction process. By exploiting data and knowledge available before the experiment, it is possible to improve reconstruction results despite the reduced number of projections. In our industrial context, for example, the computer-aided design (CAD) model of the object is often available, which provides valuable information about the geometry of the object under study. However, it is important to note that the CAD model only offers an approximate representation of the object. In NDT or metrology, it is precisely the differences between an object and its CAD model that are of interest. Therefore, integrating prior information is complex, as this information is often "approximate" and cannot be used as is. Instead, we propose to judiciously use the geometric information available from the CAD model at each step of the process. We do not propose a single method but rather a methodology for integrating prior geometric information during X-ray tomographic reconstruction
Skrede, Ole-Johan. "Explicit, A Priori Constrained Model Parameterization for Inverse Problems, Applied on Geophysical CSEM Data". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-27343.
Texto completoKindlund, Andrée. "Inversion of SkyTEM Data Based on Geophysical Logging Results for Groundwater Exploration in Örebro, Sweden". Thesis, Luleå tekniska universitet, Geovetenskap och miljöteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85315.
Texto completoBeretta, Valentina. "évaluation de la véracité des données : améliorer la découverte de la vérité en utilisant des connaissances a priori". Thesis, IMT Mines Alès, 2018. http://www.theses.fr/2018EMAL0002/document.
Texto completoThe notion of data veracity is increasingly getting attention due to the problem of misinformation and fake news. With more and more published online information it is becoming essential to develop models that automatically evaluate information veracity. Indeed, the task of evaluating data veracity is very difficult for humans. They are affected by confirmation bias that prevents them to objectively evaluate the information reliability. Moreover, the amount of information that is available nowadays makes this task time-consuming. The computational power of computer is required. It is critical to develop methods that are able to automate this task.In this thesis we focus on Truth Discovery models. These approaches address the data veracity problem when conflicting values about the same properties of real-world entities are provided by multiple sources.They aim to identify which are the true claims among the set of conflicting ones. More precisely, they are unsupervised models that are based on the rationale stating that true information is provided by reliable sources and reliable sources provide true information. The main contribution of this thesis consists in improving Truth Discovery models considering a priori knowledge expressed in ontologies. This knowledge may facilitate the identification of true claims. Two particular aspects of ontologies are considered. First of all, we explore the semantic dependencies that may exist among different values, i.e. the ordering of values through certain conceptual relationships. Indeed, two different values are not necessary conflicting. They may represent the same concept, but with different levels of detail. In order to integrate this kind of knowledge into existing approaches, we use the mathematical models of partial order. Then, we consider recurrent patterns that can be derived from ontologies. This additional information indeed reinforces the confidence in certain values when certain recurrent patterns are observed. In this case, we model recurrent patterns using rules. Experiments that were conducted both on synthetic and real-world datasets show that a priori knowledge enhances existing models and paves the way towards a more reliable information world. Source code as well as synthetic and real-world datasets are freely available
Denaxas, Spiridon Christoforos. "A novel framework for integrating a priori domain knowledge into traditional data analysis in the context of bioinformatics". Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492124.
Texto completoKatragadda, Mohit. "Development of flame surface density closure for turbulent premixed flames based on a priori analysis of direct numerical simulation data". Thesis, University of Newcastle upon Tyne, 2013. http://hdl.handle.net/10443/2195.
Texto completoRouault-Pic, Sandrine. "Reconstruction en tomographie locale : introduction d'information à priori basse résolution". Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00005016.
Texto completoLibros sobre el tema "A priori data"
Stroobandt, Dirk. A priori wire length estimates for digital design. Boston: Kluwer Academic Publishers, 2001.
Buscar texto completoKovtoni͡uk, N. F. Fotochuvstvitelʹnye MDP-pribory dli͡a preobrazovanii͡a izobrazheniĭ. Moskva: "Radio i svi͡azʹ", 1990.
Buscar texto completoHenryk, Maciejewski. Predictive modelling in high-dimensional data: Prior domain knowledge-based approaches. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2013.
Buscar texto completoD, Orli͡a︡nskiĭ A. y Gosudarstvennyĭ komitet SSSR po gidrometeorologii i kontroli͡u︡ prirodnoĭ sredy., eds. Pribory, ustanovki, avtomatizat͡s︡ii͡a︡ v ėksperimentalʹnoĭ meteorologii. Moskva: Moskovskoe otd-nie Gidrometeoizdata, 1985.
Buscar texto completoS, Kaniovskiĭ S., Bodner Vasiliĭ Afanasʹevich, Seleznev A. V y Moskovskiĭ institut priborostroenii͡a︡, eds. Tochnye pribory i izmeritelʹnye sistemy. Moskva: MIP, 1992.
Buscar texto completoS, Kaniovskiĭ S. y Moskovskiĭ institut priborostroenii͡a︡, eds. Tochnye pribory i izmeritelʹnye sistemy. Moskva: MIP, 1990.
Buscar texto completoGorn, L. S. Programmno-upravli͡a︡emye pribory i kompleksy dli͡a︡ izmerenii͡a︡ ionizirui͡u︡shchego izluchenii͡a︡. Moskva: Ėnergoatomizdat, 1985.
Buscar texto completoGorn, L. S. Programmno-upravli︠a︡emye pribory i kompleksy dli︠a︡ izmerenii︠a︡ ionizirui︠u︡shchego izluchenii︠a︡. Moskva: Ėnergoatomizdat, 1985.
Buscar texto completoScott Jones, Julie. Learn to Clean and Prepare Scale Data Prior to Descriptive Analysis Using Data From the General Social Survey (2018). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2022. http://dx.doi.org/10.4135/9781529605105.
Texto completoScott Jones, Julie. Learn to Clean and Prepare Categorical Data Prior to Descriptive Analysis Using Data From the General Social Survey (2018). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2022. http://dx.doi.org/10.4135/9781529605037.
Texto completoCapítulos de libros sobre el tema "A priori data"
Racke, Reinhard. "Weighted a priori estimates for small data". En Lectures on Nonlinear Evolution Equations, 84–90. Wiesbaden: Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-663-10629-6_8.
Texto completoRacke, Reinhard. "Weighted a priori estimates for small data". En Lectures on Nonlinear Evolution Equations, 82–88. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21873-1_8.
Texto completoRoberts, R. A. "Limited Data Tomography Using Support Minimization with a Priori Data". En Review of Progress in Quantitative Nondestructive Evaluation, 749–56. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3344-3_96.
Texto completoBoari, Giuseppe, Gabriele Cantaluppi y Marta Nai Ruscone. "Scale Reliability Evaluation for A-Priori Clustered Data". En Studies in Classification, Data Analysis, and Knowledge Organization, 37–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06692-9_5.
Texto completoWang, Cong, Tonghui Wang, David Trafimow, Hui Li, Liqun Hu y Abigail Rodriguez. "Extending the A Priori Procedure (APP) to Address Correlation Coefficients". En Data Science for Financial Econometrics, 141–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48853-6_10.
Texto completoRoberts, R. A. y O. Ertekin. "Support Minimized Limited View CT Using a Priori Data". En Review of Progress in Quantitative Nondestructive Evaluation, 373–80. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2848-7_48.
Texto completoTemme, T. y R. Decker. "Analysis of A Priori Defined Groups in Applied Market Research". En Studies in Classification, Data Analysis, and Knowledge Organization, 529–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60187-3_57.
Texto completoFujita, Hamido y Yu-Chien Ko. "A Priori Membership for Data Representation: Case Study of SPECT Heart Data Set". En Recent Advances in Intelligent Engineering, 65–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14350-3_4.
Texto completoÁsmundsdóttir, Rúna, Yusen Chen y Henk J. van Zuylen. "Dynamic Origin–Destination Matrix Estimation Using Probe Vehicle Data as A Priori Information". En Traffic Data Collection and its Standardization, 89–108. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6070-2_7.
Texto completoOrchel, Marcin. "Support Vector Regression with A Priori Knowledge Used in Order Execution Strategies Based on VWAP". En Advanced Data Mining and Applications, 318–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25856-5_24.
Texto completoActas de conferencias sobre el tema "A priori data"
Tsitsipas, Athanasios, Pascal Schiessle y Lutz Schubert. "Scotty: Fast a priori Structure-based Extraction from Time Series". En 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9671513.
Texto completoChallal, Zakia y Thouraya Bouabana-Tebibel. "A priori replica placement strategy in data grid". En 2010 International Conference on Machine and Web Intelligence (ICMWI). IEEE, 2010. http://dx.doi.org/10.1109/icmwi.2010.5647925.
Texto completoConrad, Kevin L., John R. Galloway, William P. Irwin, Walter H. Delashmit, James T. Jack, Govindaraj Kuntimad, Maritza R. Muguira, Charles Q. Little y Ralph R. Peters. "Perception and Autonomous Navigation Using a Priori Data". En SAE 2006 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-1160.
Texto completoRazansky, Daniel y Vasilis Ntziachristos. "Fluorescence molecular tomography using a priori photoacoustic data". En Biomedical Optics (BiOS) 2008, editado por Alexander A. Oraevsky y Lihong V. Wang. SPIE, 2008. http://dx.doi.org/10.1117/12.764272.
Texto completoItert, Lukasz, Wtodzislaw Duch y John Pestian. "Influence of a priori Knowledge on Medical Document Categorization". En 2007 IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2007. http://dx.doi.org/10.1109/cidm.2007.368868.
Texto completoChen, Jiangping, Rong Wang y Xuehua Tang. "An improved algorithm of a priori based on geostatistics". En International Conference on Earth Observation Data Processing and Analysis, editado por Deren Li, Jianya Gong y Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815695.
Texto completoKosaka, M., K. Koizumi y H. Shibata. "Automatic initialization of adaptive control using a priori data". En 1999 European Control Conference (ECC). IEEE, 1999. http://dx.doi.org/10.23919/ecc.1999.7099316.
Texto completoSamoylov, Alexey, Nikolay Sergeev, Margarita Kucherova y Boris Denisov. "Methodology of Big Data Integration from A Priori Unknown Heterogeneous Data Sources". En the 2018 2nd International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3297156.3297249.
Texto completoRuud, B. O. y T. A. Johansen. "Seismic Inversion Using Well-Log Data as a Priori Information". En 64th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2002. http://dx.doi.org/10.3997/2214-4609-pdb.5.p292.
Texto completo"Reliability Evaluating Theory for Data Sample with Unknown Priori Information". En 2018 3rd International Conference on Computer Science and Information Engineering. Clausius Scientific Press, 2018. http://dx.doi.org/10.23977/iccsie.2018.1054.
Texto completoInformes sobre el tema "A priori data"
Xu, Ling y Anthony Stentz. Cost-based Registration using A Priori Data for Mobile Robot Localization. Fort Belvoir, VA: Defense Technical Information Center, enero de 2008. http://dx.doi.org/10.21236/ada525649.
Texto completoMock, Clara, Christopher Rinderspacher y Brandon McWilliams. Physics-Guided Neural Network for Regularization and Learning Unbalanced Data Sets: A Priori Prediction of Melt Pool Width Variation in Directed Energy Deposition. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, marzo de 2023. http://dx.doi.org/10.21236/ad1196030.
Texto completoMcCall, Jamie, Natalie Prochaska y James Onorevole. Identifying Reasons for Small and Medium-Sized Firm Closures in North Carolina: An Exploratory Framework Leveraging Administrative Data. Carolina Small Business Development Fund, diciembre de 2022. http://dx.doi.org/10.46712/firm.closure.reasons.
Texto completoMcDonagh, Marian S., Roger Chou, Jesse Wagner, Azrah Y. Ahmed, Benjamin J. Morasco, Suchitra Iyer y Devan Kansagara. Living Systematic Reviews: Practical Considerations for the Agency for Healthcare Research and Quality Evidence-based Practice Center Program. Agency for Healthcare Research and Quality (AHRQ), marzo de 2022. http://dx.doi.org/10.23970/ahrqepcwhitepaperlsr.
Texto completoFilipiak, Katarzyna, Dietrich von Rosen, Martin Singull y Wojciech Rejchel. Estimation under inequality constraints in univariate and multivariate linear models. Linköping University Electronic Press, marzo de 2024. http://dx.doi.org/10.3384/lith-mat-r-2024-01.
Texto completoVolpe Martincus, Christian y Jerónimo Carballo. Beyond The Average Effects: The Distributional Impacts of Export Promotion Programs in Developing Countries. Inter-American Development Bank, agosto de 2010. http://dx.doi.org/10.18235/0011214.
Texto completoVolpe Martincus, Christian y Jerónimo Carballo. Export Promotion Activities in Developing Countries: What kind of Trade Do They Promote? Inter-American Development Bank, agosto de 2010. http://dx.doi.org/10.18235/0011217.
Texto completoJuden, Matthew, Tichaona Mapuwei, Till Tietz, Rachel Sarguta, Lily Medina, Audrey Prost, Macartan Humphreys et al. Process Outcome Integration with Theory (POInT): academic report. Centre for Excellence and Development Impact and Learning (CEDIL), marzo de 2023. http://dx.doi.org/10.51744/crpp5.
Texto completoBaltagi, Badi H., Georges Bresson, Anoop Chaturvedi y Guy Lacroix. Robust dynamic space-time panel data models using ε-contamination: An application to crop yields and climate change. CIRANO, enero de 2023. http://dx.doi.org/10.54932/ufyn4045.
Texto completoGentillon, Cynthia, Cory Atwood, Andrea Mack y Zhegang Ma. EVALUATION OF WEAKLY INFORMED PRIORS FOR FLEX DATA. Office of Scientific and Technical Information (OSTI), mayo de 2020. http://dx.doi.org/10.2172/1693425.
Texto completo