Literatura académica sobre el tema "3D ultrasound localization icroscopy"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "3D ultrasound localization icroscopy".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "3D ultrasound localization icroscopy"
Krause, Cassandra, Daniel Wulff y Floris Ernst. "Target Tracking in 4D Ultrasound using Localization Networks". Current Directions in Biomedical Engineering 10, n.º 2 (14 de septiembre de 2024): 29–32. http://dx.doi.org/10.1515/cdbme-2024-1059.
Texto completoProvost, Jean. "Dynamic ultrasound localization microscopy". Journal of the Acoustical Society of America 153, n.º 3_supplement (1 de marzo de 2023): A28. http://dx.doi.org/10.1121/10.0018037.
Texto completoChinnaiyan, Prakash, Wolfgang Tomé, Rakesh Patel, Rick Chappell y Mark Ritter. "3D-Ultrasound Guided Radiation Therapy in the Post-Prostatectomy Setting". Technology in Cancer Research & Treatment 2, n.º 5 (octubre de 2003): 455–58. http://dx.doi.org/10.1177/153303460300200511.
Texto completoBandaru, Raja Sekhar, Anders Sørnes, Jan D'hooge y Eigil Samset. "2066135 3D Localization of Specular Reflections Using Volumetric Ultrasound". Ultrasound in Medicine & Biology 41, n.º 4 (abril de 2015): S56. http://dx.doi.org/10.1016/j.ultrasmedbio.2014.12.250.
Texto completoZhong, Chunyan, Yanli Guo, Haiyun Huang, Liwen Tan, Yi Wu y Wenting Wang. "Three-Dimensional Reconstruction of Coronary Arteries and Its Application in Localization of Coronary Artery Segments Corresponding to Myocardial Segments Identified by Transthoracic Echocardiography". Computational and Mathematical Methods in Medicine 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/783939.
Texto completoYang, Xin, Yuhao Huang, Ruobing Huang, Haoran Dou, Rui Li, Jikuan Qian, Xiaoqiong Huang et al. "Searching collaborative agents for multi-plane localization in 3D ultrasound". Medical Image Analysis 72 (agosto de 2021): 102119. http://dx.doi.org/10.1016/j.media.2021.102119.
Texto completoLiu, Xinyu, Jinhua Yu, Yuanyuan Wang y Ping Chen. "Automatic localization of the fetal cerebellum on 3D ultrasound volumes". Medical Physics 40, n.º 11 (10 de octubre de 2013): 112902. http://dx.doi.org/10.1118/1.4824058.
Texto completoUherčík, Marián, Jan Kybic, Yue Zhao, Christian Cachard y Hervé Liebgott. "Line filtering for surgical tool localization in 3D ultrasound images". Computers in Biology and Medicine 43, n.º 12 (diciembre de 2013): 2036–45. http://dx.doi.org/10.1016/j.compbiomed.2013.09.020.
Texto completoYao, Junjie. "Deep-brain imaging with 3D integrated photoacoustic tomography and ultrasound localization microscopy". Journal of the Acoustical Society of America 155, n.º 3_Supplement (1 de marzo de 2024): A53. http://dx.doi.org/10.1121/10.0026774.
Texto completovan der Burgt, Jeroen M. A., Saskia M. Camps, Maria Antico, Gustavo Carneiro y Davide Fontanarosa. "Arthroscope Localization in 3D Ultrasound Volumes Using Weakly Supervised Deep Learning". Applied Sciences 11, n.º 15 (25 de julio de 2021): 6828. http://dx.doi.org/10.3390/app11156828.
Texto completoTesis sobre el tema "3D ultrasound localization icroscopy"
Abioui, Mourgues Myriam. "Dévelοppement d'un mοdèle préclinique chez la sοuris éveillée et stratégie thrοmbοlytique ciblée pοur l'AVC ischémique". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC420.
Texto completoIschemic stroke, caused by the obstruction of a cerebral artery, is one of the leading causes of mortality and disability worldwide. Despite the availability of treatments such as rtPA and endovascular thrombectomy, only a small percentage of patients have access to these. Moreover, despite substantial research efforts, challenges in translating results from animal models to human clinical trials limit the development of new therapies. This thesis presents a novel stroke model in awake mice to improve the translatability of preclinical studies. Through the use of functional ultrasound (fUS) and MRI, this model enables real-time assessment of hemodynamic parameters and functional recovery following ischemia. Additionally, we propose a new tool for evaluating post-stroke brain connectivity, providing insights into brain recovery and treatment response. The efficacy of the stantard thrombolytic treatment, rtPA, was evaluated, and an innovative targeted treatment approach was explored. The results underscore the potential of these multimodal imaging approaches and targeted therapies to enhance ischemic stroke management, opening new avenues for translational research
Uhercik, Marian. "Surgical tools localization in 3D ultrasound images". Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00735702.
Texto completoHeiles, Baptiste. "Microscopie par Localisation Ultrasonore en 3D". Thesis, Paris Sciences et Lettres (ComUE), 2019. https://pastel.archives-ouvertes.fr/tel-02953081.
Texto completoUltrasound Localization Microscopy has demonstrated the ability to overcome the penetration/resolution conundrum in ultrasound imaging thanks to high frame rate imaging and contrast agents. However, this approach will fall short in its clinical translation if its main disadvantages aren’t addressed: 1- long time of acquisition 2- limited two dimensional field of view 3- motion artifacts 4-data overdose and 5- data processing times. Developing 3D ULM will allow to explore entire volumes within a few minutes of acquisition, giving access to all blood vessels down to micrometer size and imaging moving organs (i.e. a patient in a clinical setting).The objective of this thesis was to perform, for the first time, volumetric ultrasound localization microscopy and unveil its potential in-vitro and in-vivo. For this purpose, I first developed new post-processing techniques, reducing 2D data processing times by a factor of 300, allowing implementation of ULM on 3D data and increasing image quality. Then, I implemented new ultrasound sequences and demonstrated that sub-wavelength features could be resolved in a tailor made wall-less phantom. I then demonstrated that 3D imaging of the rat brain microvasculature with blood flow velocimetry was achievable with micrometric resolution, and implemented 3D motion correction and image registration to provide whole brain imaging.This new tool was used to investigate both the anatomy and the vascularization mechanisms in the brain. Making the transition from 2D ULM to 3D ULM paves the way towards better imaging of in vivo organs in the rat. Thanks to technological improvements 3D ULM will spread fast in research imaging and reach all the way to clinical care
Zhao, Yue. "Biopsy needles localization and tracking methods in 3d medical ultrasound with ROI-RANSAC-KALMAN". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0015/document.
Texto completoIn medical examinations and surgeries, minimally invasive technologies are getting used more and more often. Some specially designed surgical instruments, like biopsy needles, or electrodes are operated by radiologists or robotic systems and inserted in human’s body for extracting cell samples or delivering radiation therapy. To reduce the risk of tissue injury and facilitate the visual tracking, some medical vision assistance systems, as for example, ultrasound (US) systems can be used during the surgical procedure. We have proposed to use the 3D US to facilitate the visualization of the biopsy needle, however, due to the strong speckle noise of US images and the large calculation load involved as soon as 3D data are involved, it is a challenge to locate the biopsy needle accurately and to track its position in real time in 3D US. In order to solve the two main problems above, we propose a method based on the RANSAC algorithm and Kalman filter. In this method, a region of interest (ROI) has been limited to robustly localize and track the position of the biopsy needle in real time. The ROI-RK method consists of two steps: the initialization step and the tracking step. In the first step, a ROI initialization strategy using Hessian based line filter measurement is implemented. This step can efficiently reduce the speckle noise of the ultrasound volume, and enhance line-like structures as biopsy needles. In the second step, after the ROI is initialized, a tracking loop begins. The RK algorithm can robustly localize and track the biopsy needles in a dynamic situation. The RANSAC algorithm is used to estimate the position of the micro-tools and the Kalman filter helps to update the ROI and auto-correct the needle localization result. Because the ROI-RK method is involved in a dynamic situation, a motion estimation strategy is also implemented to estimate the insertion speed of the biopsy needle. 3D US volumes with inhomogeneous background have been simulated to evaluate the performance of the ROI-RK method. The method has been tested under different conditions, such as insertion orientations angles, and contrast ratio (CR). The localization accuracy is within 1 mm no matter what the insertion direction is. Only when the CR is very low, the proposed method could fail to track because of an incomplete ultrasound imaging of the needle. Another methodology, i.e. RANSAC with machine learning (ML) algorithm has been presented. This method aims at classifying the voxels not only depending on their intensities, but also using some structure features of the biopsy needle. The simulation results show that the RANSAC with ML algorithm can separate the needle voxels and background tissue voxels with low CR
Zarader, Pierre. "Transcranial ultrasound tracking of a neurosurgical microrobot". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS054.
Texto completoWith the aim of treating brain tumors difficult to access with current surgical tools, Robeauté is developing an innovative microrobot to navigate deep brain areas with minimal invasiveness. The aim of this thesis was to develop and validate a transcranial ultrasound-based tracking system for the microrobot, in order to be able to implement robotic commands and thus guarantee both the safety and the effectiveness of the intervention.The proposed approach consists in positioning three ultrasound emitters on the patient's head, and embedding an ultrasound receiver on the microrobot. Knowing the speed of sound in biological tissue and the skull thickness crossed, it is possible to estimate the distances from the emitters to the receiver by time-of-flight measurements, and to deduce its 3D position by trilateration. A proof of concept was first carried out using a skull phantom of constant thickness, demonstrating submillimeter localization accuracy. The system was then evaluated using a calvaria phantom whose thickness and speed of sound in front of each emitter were deduced by CT scan. The system demonstrated an mean localization accuracy of 1.5 mm, i.e. a degradation in accuracy of 1 mm compared with the tracking through the skull phantom of constant thickness, explained by the uncertainty brought by the heterogeneous shape of the calvaria. Finally, three preclinical tests, without the possibility of assessing localization error, were carried out: (i) a post-mortem test on a human, (ii) a post-mortem test on a ewe, (iii) and an in vivo test on a ewe.Further improvements to the tracking system have been proposed, such as (i) the use of CT scan-based transcranial ultrasound propagation simulation to take account of skull heterogeneities, (ii) the miniaturization of the ultrasound sensor embedded in the microrobot, (iii) as well as the integration of ultrasound imaging to visualize local vascularization around the microrobot, thereby reducing the risk of lesions and detecting possible pathological angiogenesis
Capítulos de libros sobre el tema "3D ultrasound localization icroscopy"
Novotny, Paul M., Jeremy W. Cannon y Robert D. Howe. "Tool Localization in 3D Ultrasound Images". En Lecture Notes in Computer Science, 969–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39903-2_127.
Texto completoYeung, Pak-Hei, Moska Aliasi, Monique Haak, Weidi Xie y Ana I. L. Namburete. "Adaptive 3D Localization of 2D Freehand Ultrasound Brain Images". En Lecture Notes in Computer Science, 207–17. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16440-8_20.
Texto completoSun, Shih-Yu, Matthew Gilbertson y Brian W. Anthony. "Probe Localization for Freehand 3D Ultrasound by Tracking Skin Features". En Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, 365–72. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10470-6_46.
Texto completoHuang, Yuhao, Xin Yang, Rui Li, Jikuan Qian, Xiaoqiong Huang, Wenlong Shi, Haoran Dou et al. "Searching Collaborative Agents for Multi-plane Localization in 3D Ultrasound". En Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 553–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59716-0_53.
Texto completoMohareri, Omid, Mahdi Ramezani, Troy Adebar, Purang Abolmaesumi y Septimiu Salcudean. "Automatic Detection and Localization of da Vinci Tool Tips in 3D Ultrasound". En Information Processing in Computer-Assisted Interventions, 22–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30618-1_3.
Texto completoMwikirize, Cosmas, John L. Nosher y Ilker Hacihaliloglu. "Local Phase-Based Learning for Needle Detection and Localization in 3D Ultrasound". En Lecture Notes in Computer Science, 108–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67543-5_10.
Texto completoDou, Haoran, Xin Yang, Jikuan Qian, Wufeng Xue, Hao Qin, Xu Wang, Lequan Yu et al. "Agent with Warm Start and Active Termination for Plane Localization in 3D Ultrasound". En Lecture Notes in Computer Science, 290–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32254-0_33.
Texto completoZou, Yuxin, Haoran Dou, Yuhao Huang, Xin Yang, Jikuan Qian, Chaojiong Zhen, Xiaodan Ji et al. "Agent with Tangent-Based Formulation and Anatomical Perception for Standard Plane Localization in 3D Ultrasound". En Lecture Notes in Computer Science, 300–309. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16440-8_29.
Texto completoXu, Rong, Jun Ohya, Bo Zhang, Yoshinobu Sato y Masakatsu G. Fujie. "A Flexible Surgical Tool Localization Using a 3D Ultrasound Calibration System for Fetoscopic Tracheal Occlusion (FETO)". En Clinical Image-Based Procedures. From Planning to Intervention, 17–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38079-2_3.
Texto completoChen, Alvin I., Max L. Balter, Timothy J. Maguire y Martin L. Yarmush. "3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance". En Lecture Notes in Computer Science, 388–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46726-9_45.
Texto completoActas de conferencias sobre el tema "3D ultrasound localization icroscopy"
Dencks, Stefanie, Nico Oblisz, Thomas Lisson y Georg Schmitz. "Achievable Localization Precision of Clinical 3D Ultrasound Localization Microscopy (ULM)". En 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9957160.
Texto completoShahin, O., V. Martens, A. Besirevic, M. Kleemann y A. Schlaefer. "Localization of liver tumors in freehand 3D laparoscopic ultrasound". En SPIE Medical Imaging, editado por David R. Holmes III y Kenneth H. Wong. SPIE, 2012. http://dx.doi.org/10.1117/12.912375.
Texto completoBarva, Martin, Jan Kybic, Jean-Martial Mari, Christian Cachard y Vaclav Hlavac. "Automatic localization of curvilinear object in 3D ultrasound images". En Medical Imaging, editado por William F. Walker y Stanislav Y. Emelianov. SPIE, 2005. http://dx.doi.org/10.1117/12.594763.
Texto completoSchmauder, Michael, Steffen Zeiler, C. M. Gross, Juergen Waigand y Reinhold Orglmeister. "Automated 3D-stent localization from intravascular ultrasound image sequences". En Medical Imaging 2000, editado por Kenneth M. Hanson. SPIE, 2000. http://dx.doi.org/10.1117/12.387656.
Texto completoYounes, Hatem, Sandrine Voros y Jocelyne Troccaz. "Automatic needle localization in 3D ultrasound images for brachytherapy". En 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. http://dx.doi.org/10.1109/isbi.2018.8363787.
Texto completoWang, Bingxue, Jipeng Yan, Kai Riemer, Matthieu Toulemonde, Joseph Hansen-Shearer y Meng-Xing Tang. "Comparison of localization methods for 3D Super-Resolution Ultrasound Imaging". En 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9957144.
Texto completoHan, Wenzhao, Yuting Zhang, Yachuan Zhao, Anguo Luo y Bo Peng. "3D U-Net3+ Based Microbubble Filtering for Ultrasound Localization Microscopy". En 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2023. http://dx.doi.org/10.1109/smc53992.2023.10394576.
Texto completoWu Qiu, Mingyue Ding y Ming Yuchi. "Electrode Localization in 3D Ultrasound Images Using 3D Phase Grouping and Randomized Hough Transform". En 2010 Fourth International Conference on Genetic and Evolutionary Computing (ICGEC 2010). IEEE, 2010. http://dx.doi.org/10.1109/icgec.2010.57.
Texto completoSugimoto, Masanori, Noriyoshi Kanie, Shigeki Nakamura y Hiromichi Hashizume. "An accurate 3D localization technique using a single camera and ultrasound". En 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2012. http://dx.doi.org/10.1109/ipin.2012.6418874.
Texto completoPourtaherian, Arash, Nenad Mihajlovic, Farhad Ghazvinian Zanjani, Svitlana Zinger, Gary C. Ng, Hendrikus H. M. Korsten y Peter H. N. De With. "Localization of Partially Visible Needles in 3D Ultrasound Using Dilated CNNs". En 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018. http://dx.doi.org/10.1109/ultsym.2018.8579986.
Texto completo